论 H n × R ${mathbb{H}}^{n}{\times}\mathbb{R}$ 中的恒定高阶均值曲率超曲面

IF 2.1 2区 数学 Q1 MATHEMATICS
Barbara Nelli, Giuseppe Pipoli, Giovanni Russo
{"title":"论 H n × R ${mathbb{H}}^{n}{\\times}\\mathbb{R}$ 中的恒定高阶均值曲率超曲面","authors":"Barbara Nelli, Giuseppe Pipoli, Giovanni Russo","doi":"10.1515/ans-2023-0115","DOIUrl":null,"url":null,"abstract":"We classify hypersurfaces with rotational symmetry and positive constant <jats:italic>r</jats:italic>-th mean curvature in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> <m:mo>×</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:math> <jats:tex-math> ${\\mathbb{H}}^{n}{\\times}\\mathbb{R}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0115_ineq_002.png\" /> </jats:alternatives> </jats:inline-formula>. Specific constant higher order mean curvature hypersurfaces invariant under hyperbolic translation are also treated. Some of these invariant hypersurfaces are employed as barriers to prove a Ros–Rosenberg type theorem in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> <m:mo>×</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:math> <jats:tex-math> ${\\mathbb{H}}^{n}{\\times}\\mathbb{R}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0115_ineq_003.png\" /> </jats:alternatives> </jats:inline-formula>: we show that compact connected hypersurfaces of constant <jats:italic>r</jats:italic>-th mean curvature embedded in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> <m:mo>×</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>∞</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:tex-math> ${\\mathbb{H}}^{n}{\\times}\\left[0,\\infty \\right)$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0115_ineq_004.png\" /> </jats:alternatives> </jats:inline-formula> with boundary in the slice <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> <m:mo>×</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:math> <jats:tex-math> ${\\mathbb{H}}^{n}{\\times}\\left\\{0\\right\\}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0115_ineq_005.png\" /> </jats:alternatives> </jats:inline-formula> are topological disks under suitable assumptions.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"51 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On constant higher order mean curvature hypersurfaces in H n × R ${\\\\mathbb{H}}^{n}{\\\\times}\\\\mathbb{R}$\",\"authors\":\"Barbara Nelli, Giuseppe Pipoli, Giovanni Russo\",\"doi\":\"10.1515/ans-2023-0115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We classify hypersurfaces with rotational symmetry and positive constant <jats:italic>r</jats:italic>-th mean curvature in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> <m:mo>×</m:mo> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:math> <jats:tex-math> ${\\\\mathbb{H}}^{n}{\\\\times}\\\\mathbb{R}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0115_ineq_002.png\\\" /> </jats:alternatives> </jats:inline-formula>. Specific constant higher order mean curvature hypersurfaces invariant under hyperbolic translation are also treated. Some of these invariant hypersurfaces are employed as barriers to prove a Ros–Rosenberg type theorem in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> <m:mo>×</m:mo> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:math> <jats:tex-math> ${\\\\mathbb{H}}^{n}{\\\\times}\\\\mathbb{R}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0115_ineq_003.png\\\" /> </jats:alternatives> </jats:inline-formula>: we show that compact connected hypersurfaces of constant <jats:italic>r</jats:italic>-th mean curvature embedded in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> <m:mo>×</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>∞</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:math> <jats:tex-math> ${\\\\mathbb{H}}^{n}{\\\\times}\\\\left[0,\\\\infty \\\\right)$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0115_ineq_004.png\\\" /> </jats:alternatives> </jats:inline-formula> with boundary in the slice <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> <m:mo>×</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> </m:math> <jats:tex-math> ${\\\\mathbb{H}}^{n}{\\\\times}\\\\left\\\\{0\\\\right\\\\}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0115_ineq_005.png\\\" /> </jats:alternatives> </jats:inline-formula> are topological disks under suitable assumptions.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2023-0115\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0115","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们对在 H n × R $\{mathbb{H}}^{n}{times}\mathbb{R}$ 中具有旋转对称性和正常数 r 次平均曲率的超曲面进行了分类。此外,还讨论了在双曲平移下不变的特定恒定高阶平均曲率超曲面。这些不变超曲面中的一些被用作壁垒,以证明 H n × R ${\mathbb{H}}^{n}{\times}\mathbb{R}$ 中的一个 Ros-Rosenberg 型定理:我们证明了嵌入在 H n × [ 0 , ∞ ) ${mathbb{H}}^{n}\{times}\left[0,\infty \right)$ 中的边界在切片 H n × { 0 } 中的恒定 r 平均曲率的紧凑连通超曲面。 ${mathbb{H}}^{n}{times}\left\{0\right\}$ 在合适的假设条件下是拓扑磁盘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On constant higher order mean curvature hypersurfaces in H n × R ${\mathbb{H}}^{n}{\times}\mathbb{R}$
We classify hypersurfaces with rotational symmetry and positive constant r-th mean curvature in H n × R ${\mathbb{H}}^{n}{\times}\mathbb{R}$ . Specific constant higher order mean curvature hypersurfaces invariant under hyperbolic translation are also treated. Some of these invariant hypersurfaces are employed as barriers to prove a Ros–Rosenberg type theorem in H n × R ${\mathbb{H}}^{n}{\times}\mathbb{R}$ : we show that compact connected hypersurfaces of constant r-th mean curvature embedded in H n × [ 0 , ) ${\mathbb{H}}^{n}{\times}\left[0,\infty \right)$ with boundary in the slice H n × { 0 } ${\mathbb{H}}^{n}{\times}\left\{0\right\}$ are topological disks under suitable assumptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信