Liouville theorems of solutions to mixed order Hénon-Hardy type system with exponential nonlinearity
IF 2.1
2区 数学
Q1 MATHEMATICS
Wei Dai, Shaolong Peng
求助PDF
{"title":"Liouville theorems of solutions to mixed order Hénon-Hardy type system with exponential nonlinearity","authors":"Wei Dai, Shaolong Peng","doi":"10.1515/ans-2023-0109","DOIUrl":null,"url":null,"abstract":"In this paper, we are concerned with the Hénon-Hardy type systems with exponential nonlinearity on a half space <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msubsup> </m:math> <jats:tex-math> ${\\mathbb{R}}_{+}^{2}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0109_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula>: <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mfenced close=\"\" open=\"{\"> <m:mrow> <m:mtable> <m:mtr> <m:mtd columnalign=\"left\"> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mfrac> <m:mrow> <m:mi>α</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mo stretchy=\"false\">|</m:mo> <m:mi>x</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mi>a</m:mi> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mi>v</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mspace width=\"0.17em\" /> <m:mspace width=\"0.17em\" /> <m:mspace width=\"0.17em\" /> <m:mspace width=\"0.17em\" /> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msubsup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msubsup> <m:mo>,</m:mo> <m:mspace width=\"1em\" /> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi>v</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mo stretchy=\"false\">|</m:mo> <m:mi>x</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mi>b</m:mi> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> <m:mi>v</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mspace width=\"0.17em\" /> <m:mspace width=\"0.17em\" /> <m:mspace width=\"0.17em\" /> <m:mspace width=\"0.17em\" /> <m:mspace width=\"0.17em\" /> <m:mspace width=\"0.17em\" /> <m:mspace width=\"0.17em\" /> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msubsup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msubsup> <m:mo>,</m:mo> <m:mspace width=\"1em\" /> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math> $\\begin{cases}{\\left(-{\\Delta}\\right)}^{\\frac{\\alpha }{2}}u\\left(x\\right)=\\vert x{\\vert }^{a}{u}^{{p}_{1}}\\left(x\\right){e}^{{q}_{1}v\\left(x\\right)}, x\\in {\\mathbb{R}}_{+}^{2},\\quad \\hfill \\\\ \\left(-{\\Delta}\\right)v\\left(x\\right)=\\vert x{\\vert }^{b}{u}^{{p}_{2}}\\left(x\\right){e}^{{q}_{2}v\\left(x\\right)}, x\\in {\\mathbb{R}}_{+}^{2},\\quad \\hfill \\end{cases}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0109_ineq_002.png\" /> </jats:alternatives> </jats:inline-formula> with Dirichlet boundary conditions, where 0 < <jats:italic>α</jats:italic> < 2 and <jats:italic>p</jats:italic> <jats:sub>1</jats:sub>, <jats:italic>p</jats:italic> <jats:sub>2</jats:sub>, <jats:italic>q</jats:italic> <jats:sub>1</jats:sub>, <jats:italic>q</jats:italic> <jats:sub>2</jats:sub> > 0. First, we derived the integral representation formula corresponding to the above system under the assumption <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>≥</m:mo> <m:mo>−</m:mo> <m:mfrac> <m:mrow> <m:mn>2</m:mn> <m:mi>a</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:mfrac> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math> ${p}_{1}\\ge -\\frac{2a}{\\alpha }-1$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0109_ineq_003.png\" /> </jats:alternatives> </jats:inline-formula>. Then, we prove Liouville theorem for solutions to the above system via the method of scaling spheres.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"14 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0109","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
In this paper, we are concerned with the Hénon-Hardy type systems with exponential nonlinearity on a half space R + 2 ${\mathbb{R}}_{+}^{2}$ : ( − Δ ) α 2 u ( x ) = | x | a u p 1 ( x ) e q 1 v ( x ) , x ∈ R + 2 , ( − Δ ) v ( x ) = | x | b u p 2 ( x ) e q 2 v ( x ) , x ∈ R + 2 , $\begin{cases}{\left(-{\Delta}\right)}^{\frac{\alpha }{2}}u\left(x\right)=\vert x{\vert }^{a}{u}^{{p}_{1}}\left(x\right){e}^{{q}_{1}v\left(x\right)}, x\in {\mathbb{R}}_{+}^{2},\quad \hfill \\ \left(-{\Delta}\right)v\left(x\right)=\vert x{\vert }^{b}{u}^{{p}_{2}}\left(x\right){e}^{{q}_{2}v\left(x\right)}, x\in {\mathbb{R}}_{+}^{2},\quad \hfill \end{cases}$ with Dirichlet boundary conditions, where 0 < α < 2 and p 1 , p 2 , q 1 , q 2 > 0. First, we derived the integral representation formula corresponding to the above system under the assumption p 1 ≥ − 2 a α − 1 ${p}_{1}\ge -\frac{2a}{\alpha }-1$ . Then, we prove Liouville theorem for solutions to the above system via the method of scaling spheres.
指数非线性混合阶 Hénon-Hardy 型系统解的 Liouville 定理
本文关注的是半空间 R + 2 ${\mathbb{R}}_{+}^{2}$ 上具有指数非线性的 Hénon-Hardy 型系统: ( - Δ ) α 2 u ( x ) = | x | a u p 1 ( x ) e q 1 v ( x ) , x ∈ R + 2 , ( - Δ ) v ( x ) = | x | b u p 2 ( x ) e q 2 v ( x ) , x ∈ R + 2 、 $\begin{cases}{\left(-{\Delta}\right)}^{\frac{\alpha }{2}}u\left(x\right)=\vert x{\vert }^{a}{u}^{{p}_{1}}\left(x\right){e}^{{q}_{1}v\left(x\right)}, x\in {\mathbb{R}}_{+}^{2},\quad \hfill \left(-{\Delta}\right)v\left(x\right)=vert x{vert }^{b}{u}^{p}_{2}}\left(x\right){e}^{q}_{2}v\left(x\right)}、x\in {\mathbb{R}}_{+}^{2},\quad \hfill \end{cases}$ with Dirichlet boundary conditions, where 0 <;α < 2 和 p 1, p 2, q 1, q 2 > 0。首先,我们在假设 p 1 ≥ - 2 a α - 1 ${p}_{1}\ge -\frac{2a}{\alpha }-1$ 的条件下导出了与上述系统相对应的积分表示公式。然后,我们通过缩放球方法证明上述系统解的柳维尔定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
来源期刊
期刊介绍:
Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.