{"title":"零质量问题符号变化解的最小能量上限","authors":"Mónica Clapp, Liliane Maia, Benedetta Pellacci","doi":"10.1515/ans-2022-0065","DOIUrl":null,"url":null,"abstract":"We give an upper bound for the least possible energy of a sign-changing solution to the nonlinear scalar field equation <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mi>u</m:mi> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\"0.17em\" /> <m:mi>u</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mi>D</m:mi> <m:mn>1,2</m:mn> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:msup> <m:mi mathvariant=\"normal\">R</m:mi> <m:mi>N</m:mi> </m:msup> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:math> <jats:tex-math> $-{\\Delta}u=f\\left(u\\right), u\\in {D}^{1,2}\\left({\\mathrm{R}}^{N}\\right),$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2022-0065_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula> where <jats:italic>N</jats:italic> ≥ 5 and the nonlinearity <jats:italic>f</jats:italic> is subcritical at infinity and supercritical near the origin. More precisely, we establish the existence of a nonradial sign-changing solution whose energy is smaller that 12<jats:italic>c</jats:italic> <jats:sub>0</jats:sub> if <jats:italic>N</jats:italic> = 5, 6 and smaller than 10<jats:italic>c</jats:italic> <jats:sub>0</jats:sub> if <jats:italic>N</jats:italic> ≥ 7, where <jats:italic>c</jats:italic> <jats:sub>0</jats:sub> is the ground state energy.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"143 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An upper bound for the least energy of a sign-changing solution to a zero mass problem\",\"authors\":\"Mónica Clapp, Liliane Maia, Benedetta Pellacci\",\"doi\":\"10.1515/ans-2022-0065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an upper bound for the least possible energy of a sign-changing solution to the nonlinear scalar field equation <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mo>−</m:mo> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mi>u</m:mi> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\\\"0.17em\\\" /> <m:mi>u</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mi>D</m:mi> <m:mn>1,2</m:mn> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:msup> <m:mi mathvariant=\\\"normal\\\">R</m:mi> <m:mi>N</m:mi> </m:msup> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:math> <jats:tex-math> $-{\\\\Delta}u=f\\\\left(u\\\\right), u\\\\in {D}^{1,2}\\\\left({\\\\mathrm{R}}^{N}\\\\right),$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2022-0065_ineq_001.png\\\" /> </jats:alternatives> </jats:inline-formula> where <jats:italic>N</jats:italic> ≥ 5 and the nonlinearity <jats:italic>f</jats:italic> is subcritical at infinity and supercritical near the origin. More precisely, we establish the existence of a nonradial sign-changing solution whose energy is smaller that 12<jats:italic>c</jats:italic> <jats:sub>0</jats:sub> if <jats:italic>N</jats:italic> = 5, 6 and smaller than 10<jats:italic>c</jats:italic> <jats:sub>0</jats:sub> if <jats:italic>N</jats:italic> ≥ 7, where <jats:italic>c</jats:italic> <jats:sub>0</jats:sub> is the ground state energy.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\"143 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2022-0065\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0065","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们给出了非线性标量场方程- Δ u = f ( u ) , u ∈ D 1,2 ( R N ) 的符号变化解的最小能量上限、 $-{{Delta}u=f\left(u\right), u\in {D}^{1,2}\left({\mathrm{R}}^{N}\right),$ 其中 N ≥ 5,非线性 f 在无穷远处是次临界的,在原点附近是超临界的。更确切地说,我们证明了非径向符号变化解的存在,当 N = 5, 6 时,其能量小于 12c 0;当 N ≥ 7 时,其能量小于 10c 0,其中 c 0 为基态能量。
An upper bound for the least energy of a sign-changing solution to a zero mass problem
We give an upper bound for the least possible energy of a sign-changing solution to the nonlinear scalar field equation −Δu=f(u),u∈D1,2(RN), $-{\Delta}u=f\left(u\right), u\in {D}^{1,2}\left({\mathrm{R}}^{N}\right),$ where N ≥ 5 and the nonlinearity f is subcritical at infinity and supercritical near the origin. More precisely, we establish the existence of a nonradial sign-changing solution whose energy is smaller that 12c0 if N = 5, 6 and smaller than 10c0 if N ≥ 7, where c0 is the ground state energy.
期刊介绍:
Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.