{"title":"关于一类 k-Hessian 问题的大解","authors":"Haitao Wan","doi":"10.1515/ans-2023-0128","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the <jats:italic>k</jats:italic>-Hessian problem <jats:italic>S</jats:italic> <jats:sub> <jats:italic>k</jats:italic> </jats:sub>(<jats:italic>D</jats:italic> <jats:sup>2</jats:sup> <jats:italic>u</jats:italic>) = <jats:italic>b</jats:italic>(<jats:italic>x</jats:italic>)<jats:italic>f</jats:italic>(<jats:italic>u</jats:italic>) in Ω, <jats:italic>u</jats:italic> = +∞ on <jats:italic>∂</jats:italic>Ω, where Ω is a <jats:italic>C</jats:italic> <jats:sup>∞</jats:sup>-smooth bounded strictly (<jats:italic>k</jats:italic> − 1)-convex domain in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>${\\mathbb{R}}^{N}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0128_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula> with <jats:italic>N</jats:italic> ≥ 2, <jats:italic>b</jats:italic> ∈ C<jats:sup>∞</jats:sup>(Ω) is positive in Ω and may be singular or vanish on <jats:italic>∂</jats:italic>Ω, <jats:italic>f</jats:italic> ∈ <jats:italic>C</jats:italic>[0, ∞) ∩ <jats:italic>C</jats:italic> <jats:sup>1</jats:sup>(0, ∞) (or <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi>f</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi>C</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>$f\\in {C}^{1}\\left(\\mathbb{R}\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0128_ineq_002.png\" /> </jats:alternatives> </jats:inline-formula>) is a positive and increasing function. We establish the first expansions (equalities) of <jats:italic>k</jats:italic>-convex solutions to the above problem when <jats:italic>f</jats:italic> is borderline regularly varying and Γ-varying at infinity respectively. For the former, we reveal the exact influences of some indexes of <jats:italic>f</jats:italic> and principal curvatures of <jats:italic>∂</jats:italic>Ω on the first expansion of solutions. For the latter, we find the principal curvatures of <jats:italic>∂</jats:italic>Ω have no influences on the expansions. Our results and methods are quite different from the existing ones (including <jats:italic>k</jats:italic> = <jats:italic>N</jats:italic>). Moreover, we know the existence of <jats:italic>k</jats:italic>-convex solutions to the above problem (including <jats:italic>k</jats:italic> = <jats:italic>N</jats:italic>) is still an open problem when <jats:italic>b</jats:italic> possesses high singularity on <jats:italic>∂</jats:italic>Ω and <jats:italic>f</jats:italic> satisfies Keller–Osserman type condition. For the radially symmetric case in the ball, we give a positive answer to this open problem, and then we further show the global estimates for all radial large solutions.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"49 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the large solutions to a class of k-Hessian problems\",\"authors\":\"Haitao Wan\",\"doi\":\"10.1515/ans-2023-0128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the <jats:italic>k</jats:italic>-Hessian problem <jats:italic>S</jats:italic> <jats:sub> <jats:italic>k</jats:italic> </jats:sub>(<jats:italic>D</jats:italic> <jats:sup>2</jats:sup> <jats:italic>u</jats:italic>) = <jats:italic>b</jats:italic>(<jats:italic>x</jats:italic>)<jats:italic>f</jats:italic>(<jats:italic>u</jats:italic>) in Ω, <jats:italic>u</jats:italic> = +∞ on <jats:italic>∂</jats:italic>Ω, where Ω is a <jats:italic>C</jats:italic> <jats:sup>∞</jats:sup>-smooth bounded strictly (<jats:italic>k</jats:italic> − 1)-convex domain in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>${\\\\mathbb{R}}^{N}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0128_ineq_001.png\\\" /> </jats:alternatives> </jats:inline-formula> with <jats:italic>N</jats:italic> ≥ 2, <jats:italic>b</jats:italic> ∈ C<jats:sup>∞</jats:sup>(Ω) is positive in Ω and may be singular or vanish on <jats:italic>∂</jats:italic>Ω, <jats:italic>f</jats:italic> ∈ <jats:italic>C</jats:italic>[0, ∞) ∩ <jats:italic>C</jats:italic> <jats:sup>1</jats:sup>(0, ∞) (or <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mi>f</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi>C</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>$f\\\\in {C}^{1}\\\\left(\\\\mathbb{R}\\\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0128_ineq_002.png\\\" /> </jats:alternatives> </jats:inline-formula>) is a positive and increasing function. We establish the first expansions (equalities) of <jats:italic>k</jats:italic>-convex solutions to the above problem when <jats:italic>f</jats:italic> is borderline regularly varying and Γ-varying at infinity respectively. For the former, we reveal the exact influences of some indexes of <jats:italic>f</jats:italic> and principal curvatures of <jats:italic>∂</jats:italic>Ω on the first expansion of solutions. For the latter, we find the principal curvatures of <jats:italic>∂</jats:italic>Ω have no influences on the expansions. Our results and methods are quite different from the existing ones (including <jats:italic>k</jats:italic> = <jats:italic>N</jats:italic>). Moreover, we know the existence of <jats:italic>k</jats:italic>-convex solutions to the above problem (including <jats:italic>k</jats:italic> = <jats:italic>N</jats:italic>) is still an open problem when <jats:italic>b</jats:italic> possesses high singularity on <jats:italic>∂</jats:italic>Ω and <jats:italic>f</jats:italic> satisfies Keller–Osserman type condition. For the radially symmetric case in the ball, we give a positive answer to this open problem, and then we further show the global estimates for all radial large solutions.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2023-0128\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0128","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文考虑 k-Hessian 问题 S k (D 2 u) = b(x)f(u) in Ω, u = +∞ on ∂Ω,其中 Ω 是 R N $\{mathbb{R}}^{N}$ 中的一个 C ∞-光滑有界严格(k - 1)-凸域,N ≥ 2、b∈ C∞(Ω) 在 Ω 中为正,在 ∂Ω 上可能是奇异的或消失,f ∈ C[0, ∞) ∩ C 1(0, ∞) (或 f∈ C 1 ( R ) $f\in {C}^{1}\left(\mathbb{R}\right)$ )是一个正的递增函数。我们分别建立了当 f 在无穷远处为边界正则变化和 Γ 变化时,上述问题的 k 个凸解的第一次展开(相等)。对于前者,我们揭示了 f 的某些指数和 ∂Ω 的主曲率对解的第一次展开的确切影响。对于后者,我们发现∂Ω 的主曲率对展开没有影响。我们的结果和方法与现有的结果和方法(包括 k = N)截然不同。此外,我们还知道,当 b 在 ∂Ω 上具有高奇异性且 f 满足 Keller-Osserman 类型条件时,上述问题(包括 k = N)的 k 凸解的存在仍是一个未决问题。对于球中的径向对称情况,我们给出了这个开放问题的肯定答案,然后进一步展示了所有径向大解的全局估计。
On the large solutions to a class of k-Hessian problems
In this paper, we consider the k-Hessian problem Sk(D2u) = b(x)f(u) in Ω, u = +∞ on ∂Ω, where Ω is a C∞-smooth bounded strictly (k − 1)-convex domain in RN${\mathbb{R}}^{N}$ with N ≥ 2, b ∈ C∞(Ω) is positive in Ω and may be singular or vanish on ∂Ω, f ∈ C[0, ∞) ∩ C1(0, ∞) (or f∈C1(R)$f\in {C}^{1}\left(\mathbb{R}\right)$) is a positive and increasing function. We establish the first expansions (equalities) of k-convex solutions to the above problem when f is borderline regularly varying and Γ-varying at infinity respectively. For the former, we reveal the exact influences of some indexes of f and principal curvatures of ∂Ω on the first expansion of solutions. For the latter, we find the principal curvatures of ∂Ω have no influences on the expansions. Our results and methods are quite different from the existing ones (including k = N). Moreover, we know the existence of k-convex solutions to the above problem (including k = N) is still an open problem when b possesses high singularity on ∂Ω and f satisfies Keller–Osserman type condition. For the radially symmetric case in the ball, we give a positive answer to this open problem, and then we further show the global estimates for all radial large solutions.
期刊介绍:
Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.