Microgravity Science and Technology最新文献

筛选
英文 中文
Correction: Beijing Drop Tower Microgravity Adjustment Towards 10–3 ~ 10−5g Level by Cold-Gas Thrusters 修正:北京落塔微重力调整到10 - 3 ~ 10−5g水平的冷-气推力器
IF 1.8 4区 工程技术
Microgravity Science and Technology Pub Date : 2023-09-14 DOI: 10.1007/s12217-023-10075-8
Chu Zhang, Chao Yang, Liang Hu, Shuyang Chen, Yifan Zhao, Li Duan, Qi Kang
{"title":"Correction: Beijing Drop Tower Microgravity Adjustment Towards 10–3 ~ 10−5g Level by Cold-Gas Thrusters","authors":"Chu Zhang, Chao Yang, Liang Hu, Shuyang Chen, Yifan Zhao, Li Duan, Qi Kang","doi":"10.1007/s12217-023-10075-8","DOIUrl":"10.1007/s12217-023-10075-8","url":null,"abstract":"","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"35 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134796573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Dual-Species Atom Interferometer Payload for Operation on Sounding Rockets 探空火箭上运行的双组分原子干涉仪载荷
IF 1.8 4区 工程技术
Microgravity Science and Technology Pub Date : 2023-09-07 DOI: 10.1007/s12217-023-10068-7
Michael Elsen, Baptist Piest, Fabian Adam, Oliver Anton, Paweł Arciszewski, Wolfgang Bartosch, Dennis Becker, Kai Bleeke, Jonas Böhm, Sören Boles, Klaus Döringshoff, Priyanka Guggilam, Ortwin Hellmig, Isabell Imwalle, Simon Kanthak, Christian Kürbis, Matthias Koch, Maike Diana Lachmann, Moritz Mihm, Hauke Müntinga, Ayush Mani Nepal, Tim Oberschulte, Peter Ohr, Alexandros Papakonstantinou, Arnau Prat, Christian Reichelt, Jan Sommer, Christian Spindeldreier, Marvin Warner, Thijs Wendrich, André Wenzlawski, Holger Blume, Claus Braxmaier, Daniel Lüdtke, Achim Peters, Ernst Maria Rasel, Klaus Sengstock, Andreas Wicht, Patrick Windpassinger, Jens Grosse
{"title":"A Dual-Species Atom Interferometer Payload for Operation on Sounding Rockets","authors":"Michael Elsen,&nbsp;Baptist Piest,&nbsp;Fabian Adam,&nbsp;Oliver Anton,&nbsp;Paweł Arciszewski,&nbsp;Wolfgang Bartosch,&nbsp;Dennis Becker,&nbsp;Kai Bleeke,&nbsp;Jonas Böhm,&nbsp;Sören Boles,&nbsp;Klaus Döringshoff,&nbsp;Priyanka Guggilam,&nbsp;Ortwin Hellmig,&nbsp;Isabell Imwalle,&nbsp;Simon Kanthak,&nbsp;Christian Kürbis,&nbsp;Matthias Koch,&nbsp;Maike Diana Lachmann,&nbsp;Moritz Mihm,&nbsp;Hauke Müntinga,&nbsp;Ayush Mani Nepal,&nbsp;Tim Oberschulte,&nbsp;Peter Ohr,&nbsp;Alexandros Papakonstantinou,&nbsp;Arnau Prat,&nbsp;Christian Reichelt,&nbsp;Jan Sommer,&nbsp;Christian Spindeldreier,&nbsp;Marvin Warner,&nbsp;Thijs Wendrich,&nbsp;André Wenzlawski,&nbsp;Holger Blume,&nbsp;Claus Braxmaier,&nbsp;Daniel Lüdtke,&nbsp;Achim Peters,&nbsp;Ernst Maria Rasel,&nbsp;Klaus Sengstock,&nbsp;Andreas Wicht,&nbsp;Patrick Windpassinger,&nbsp;Jens Grosse","doi":"10.1007/s12217-023-10068-7","DOIUrl":"10.1007/s12217-023-10068-7","url":null,"abstract":"<div><p>We report on the design and the construction of a sounding rocket payload capable of performing atom interferometry with Bose-Einstein condensates of <span>(^{41})</span>K and <span>(^{87})</span>Rb. The apparatus is designed to be launched in two consecutive missions with a VSB-30 sounding rocket and is qualified to withstand the expected vibrational loads of 1.8 g root-mean-square in a frequency range between 20–2000 Hz and the expected static loads during ascent and re-entry of 25 g. We present a modular design of the scientific payload comprising a physics package, a laser system, an electronics system and a battery module. A dedicated on-board software provides a largely automated process of predefined experiments. To operate the payload safely in laboratory and flight mode, a thermal control system and ground support equipment has been implemented and will be presented. The payload presented here represents a cornerstone for future applications of matter wave interferometry with ultracold atoms on satellites.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"35 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12217-023-10068-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77018381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Investigations on Attenuation of Lamb Waves in Droplet Actuation 液滴驱动中兰姆波衰减的研究
IF 1.8 4区 工程技术
Microgravity Science and Technology Pub Date : 2023-09-05 DOI: 10.1007/s12217-023-10071-y
Wei Liang, Zichen Wang, Zhaodong Yang, Tong Wang, He Gu
{"title":"Investigations on Attenuation of Lamb Waves in Droplet Actuation","authors":"Wei Liang,&nbsp;Zichen Wang,&nbsp;Zhaodong Yang,&nbsp;Tong Wang,&nbsp;He Gu","doi":"10.1007/s12217-023-10071-y","DOIUrl":"10.1007/s12217-023-10071-y","url":null,"abstract":"<div><p>In droplet actuation, Lamb waves are utilized to manipulate and control liquid droplets on solid surfaces. This paper presents an analytical model for driving droplets using Lamb waves (a type of surface acoustic wave) on a non-piezoelectric substrate. The driving of droplets is simulated using the level set two-phase flow method, and the obtained data are validated through corresponding experiments. The simulation and experimental data are therefore combined to calculate and verify the attenuation of Lamb waves in droplet actuation. The research findings indicate that the droplets absorb the maximum amount of Lamb wave energy when their volume is 50 µL, and at this point, the Lamb wave experiences the fastest attenuation.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"35 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72961932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Low–Frequency Vibrations on the Hydrodynamic Properties of Single Bubbles at Different Gravity Levels 不同重力水平下低频振动对单个气泡水动力特性的影响
IF 1.8 4区 工程技术
Microgravity Science and Technology Pub Date : 2023-09-05 DOI: 10.1007/s12217-023-10073-w
Hao Ni, MingJun Pang
{"title":"Effect of Low–Frequency Vibrations on the Hydrodynamic Properties of Single Bubbles at Different Gravity Levels","authors":"Hao Ni,&nbsp;MingJun Pang","doi":"10.1007/s12217-023-10073-w","DOIUrl":"10.1007/s12217-023-10073-w","url":null,"abstract":"<div><p>A key aspect of space application technology is the generation and control of multi–phase flows. The efficiency of mass and heat transfer can be significantly improved by adding bubbles or droplets into continuous phases. The effects of the ratio of amplitude to bubble diameter (<i>A/D</i>), Bond number (<i>Bo</i>), and different gravity levels (<i>G/g</i>) on bubble centroid motion and shape oscillation are fully analyzed using the VOF method to understand the bubble–centroid trajectory and shape–oscillation mechanism under low–frequency vibrations. The present studies show that <i>A/D</i>, <i>Bo</i>, and <i>G/g</i> have important effects on bubble trajectory and shape oscillation. There are two types of oscillations for bubble shape: regular oscillation and chaotic oscillation. As <i>Bo</i> and <i>A/D</i> increase, bubble oscillation in a gravity–free environment changes from regular to chaotic oscillation. For the present results, bubble oscillations at different gravity levels (except zero–gravity level) are chaotic oscillations. Three types are recognized for the bubble–centroid motion: levitation, rising and sinking. When both <i>A/D</i> and <i>Bo</i> are tiny, a bubble is hung in its initial position in a gravity–free environment. Bubble–centroid motion changes from sinking to rising with an increase in <i>A/D</i> and <i>Bo</i>. The higher the gravity level is, the shorter the time taken for the bubble to rise is. The change in the flow field seems to be mainly caused by the vibration of fluid particles, almost independent of the level of gravity. The flow field becomes more chaotic as <i>A/D</i> and <i>Bo</i> increase.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"35 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72619782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isorhamnetin Alleviates the Depression Induced by Hindlimb Unloading in Rats 异鼠李素减轻大鼠后肢卸荷所致抑郁
IF 1.8 4区 工程技术
Microgravity Science and Technology Pub Date : 2023-08-31 DOI: 10.1007/s12217-023-10070-z
Xiaoni Deng, Tingting Ren, Hao Zhang, Shuo Gao, Wenhui Yang, Jiaqi Zhang, Hong Yu, Xiang Jin, Hong Wang, Fan Li, Limin Zhai, Hafiz Muhammad Umer Farooq, Wenjuan Zhang, Airong Qian
{"title":"Isorhamnetin Alleviates the Depression Induced by Hindlimb Unloading in Rats","authors":"Xiaoni Deng,&nbsp;Tingting Ren,&nbsp;Hao Zhang,&nbsp;Shuo Gao,&nbsp;Wenhui Yang,&nbsp;Jiaqi Zhang,&nbsp;Hong Yu,&nbsp;Xiang Jin,&nbsp;Hong Wang,&nbsp;Fan Li,&nbsp;Limin Zhai,&nbsp;Hafiz Muhammad Umer Farooq,&nbsp;Wenjuan Zhang,&nbsp;Airong Qian","doi":"10.1007/s12217-023-10070-z","DOIUrl":"10.1007/s12217-023-10070-z","url":null,"abstract":"<div><p>Depression induced by weightlessness exposure in spaceflight has seriously affected astronauts’ psychology and flight missions, but the preventive and treatment methods remain limited. Here, we used systems pharmacology to identify the potential bioactive compounds from <i>Hippophae rhamnoides</i> L. (HR) for treating depression caused by weightlessness. First, isorhamnetin was screened out as a potential drug in HR for treating depression. Further, the therapeutic effect of isorhamnetin was investigated in depression induced by weightlessness using the hindlimb unloading (HLU) rat model. We found that treatment with isorhamnetin notably shortened immobility time during forced swimming tests and tail suspension tests in HLU rats. The hematoxylin-eosin staining results revealed that isorhamnetin could ameliorate morphological damage to the hippocampus of HLU-induced rats. Moreover, exposure to HLU caused increased corticosterone (CORT) and adrenocorticotropic hormone (ACTH) concentrations in serum. Administration with isorhamnetin for four weeks reduced the ACTH and CORT content in HLU rats. The 5-hydroxytryptamine and dopamine content in hippocampus were reduced in HLU rats, which were increased after isorhamnetin-treatment. Conclusively, isorhamnetin can alleviate the depression and hippocampus damage induced by weightlessness. Our study identified that isorhamnetin could be a natural bioactive drug for depression.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"35 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86292483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Electret-Based Self-Sensing Micro-Vibration Absorber and the Modeling Based on Support Vector Regression Algorithm 一种基于驻极体的自感知微振减振器及基于支持向量回归算法的建模
IF 1.8 4区 工程技术
Microgravity Science and Technology Pub Date : 2023-08-18 DOI: 10.1007/s12217-023-10069-6
Guoping Liu, Zhaoshu Yang, Zhongbo He, Kai Tao, Jingtao Zhou, Sen Li, Wei Hu, Minzheng Sun
{"title":"An Electret-Based Self-Sensing Micro-Vibration Absorber and the Modeling Based on Support Vector Regression Algorithm","authors":"Guoping Liu,&nbsp;Zhaoshu Yang,&nbsp;Zhongbo He,&nbsp;Kai Tao,&nbsp;Jingtao Zhou,&nbsp;Sen Li,&nbsp;Wei Hu,&nbsp;Minzheng Sun","doi":"10.1007/s12217-023-10069-6","DOIUrl":"10.1007/s12217-023-10069-6","url":null,"abstract":"<div><p>In this paper, we developed a lightweight, self-sensing electret-based dynamic vibration absorber (ESDVA) for micro-vibration suppressions. We modeled the electromechanical coupling procedure of the ESDVA based on the first principles and proposed a sensing model based on support vector regression machine (SVR). The SVR algorithm helps to linearize the original voltage generated by the electret for precise vibration sensing. A prototype of the ESDVA is fabricated, and the theoretical model and SVR algorithms are verified by experiments. According to experimental results, the ESDVA successfully reduced primary structure vibration amplitudes by up to 50% with a mass burden of 1.4% of the primary structure. The proposed sensing model achieve an accuracy rate of over 93.5% for vibration sensing and the robustness of the model was also assessed. Moreover, the advantages of the proposed electret-based sensing method over classical methods are discussed.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"35 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4711990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficacy of the Random Positioning Machine as a Terrestrial Analogue to Microgravity in Studies of Seedling Phototropism 随机定位机在地球模拟微重力条件下幼苗向光性研究中的效果
IF 1.8 4区 工程技术
Microgravity Science and Technology Pub Date : 2023-08-14 DOI: 10.1007/s12217-023-10066-9
Ariel M. Hughes, Joshua P. Vandenbrink, John Z. Kiss
{"title":"Efficacy of the Random Positioning Machine as a Terrestrial Analogue to Microgravity in Studies of Seedling Phototropism","authors":"Ariel M. Hughes,&nbsp;Joshua P. Vandenbrink,&nbsp;John Z. Kiss","doi":"10.1007/s12217-023-10066-9","DOIUrl":"10.1007/s12217-023-10066-9","url":null,"abstract":"<div><p>The future of space exploration will be contingent upon the use of plants in bioregenerative life support systems. Unfortunately, the microgravity of space can cause stress in plants, which can reduce growth. The Random Positioning Machine, RPM, is a device designed to provide an analogue for the effects of microgravity on Earth by rotating specimens in three dimensions. In this study, we compare the results from experiments conducted on the International Space Station with those conducted using the RPM (in the 3D clinostat mode) on the ground. Seedlings of <i>Arabidopsis thaliana</i> wildtype and phytochrome mutants were grown in true microgravity and in the omnidirectional gravity on a rotating RPM on the ground. We found that the RPM treatment caused less stress in the seedlings than did true microgravity. We also report that phytochromes A and B play roles in phototropic responses to unilateral light and that these roles differ in the two gravitational environments. Finally, we conclude that while root phototropism in unilateral red and blue differs significantly between the microgravity and omnidirectional stimuli, the RPM can serve as a reasonable analogue of microgravity conditions for assessment of shoot phototropism.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"35 4","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85180042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Modeling of the Influence of Gas Diffusion Layer Properties on Liquid Water Transport and Transient Responses in a Proton Exchange Membrane Fuel Cell 质子交换膜燃料电池中气体扩散层性质对液态水输运及瞬态响应影响的数值模拟
IF 1.8 4区 工程技术
Microgravity Science and Technology Pub Date : 2023-08-09 DOI: 10.1007/s12217-023-10067-8
Faycel Khemili, Mustapha Najjari
{"title":"Numerical Modeling of the Influence of Gas Diffusion Layer Properties on Liquid Water Transport and Transient Responses in a Proton Exchange Membrane Fuel Cell","authors":"Faycel Khemili,&nbsp;Mustapha Najjari","doi":"10.1007/s12217-023-10067-8","DOIUrl":"10.1007/s12217-023-10067-8","url":null,"abstract":"<div><p>In this study, a one-dimensional, two-phase transient model has been developed to study the transient behavior of water transport in the porous gas diffusion layer (GDL) of a proton exchange membrane fuel cell PEM fuel cell. This model based on the numerical resolution of the mass transport of liquid water and oxygen in the porous GDL is used to gauge the effects of various design and operational parameters, namely, the current density, GDL thickness and GDL permeability, on the overall performance of the system.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"35 4","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76763718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of the Shape Factor on Combined Buoyancy and Marangoni Convection in a Hybrid Nanofluid Filled Cylindrical Porous Annulus 形状因子对混合纳米流体填充圆柱形多孔环空中浮力和Marangoni对流的影响
IF 1.8 4区 工程技术
Microgravity Science and Technology Pub Date : 2023-08-05 DOI: 10.1007/s12217-023-10065-w
B. Kanimozhi, M. Muthtamilselvan, Ziyad A. Alhussain
{"title":"Impact of the Shape Factor on Combined Buoyancy and Marangoni Convection in a Hybrid Nanofluid Filled Cylindrical Porous Annulus","authors":"B. Kanimozhi,&nbsp;M. Muthtamilselvan,&nbsp;Ziyad A. Alhussain","doi":"10.1007/s12217-023-10065-w","DOIUrl":"10.1007/s12217-023-10065-w","url":null,"abstract":"<div><p>The ongoing research numerically examines the impact of the nanoparticle shape factor on the coupled Marangoni and buoyancy convection in a cylindrical porous annular region saturated with Ag-MgO/water hybrid nanofluid with magnetic effects. The internal wall of the annulus is considered to be hot, while the external wall is believed to be cold. The inner cylinder is fitted with a thin circular heated disc. To solve the non-dimensional governing equations, the finite difference approach with ADI, central differencing, and SOR technique is used. The major goal of the current study is to analyze the impact of the various shape factors on the Marangoni convection, magnetic field and nanoparticle volume fraction in the cylindrical annulus. The current study reveals that the spherical shaped nanoparticle outperforms in all the cases and <span>(overline{Nu})</span> hikes with the Marangoni number and declines with Hartmann number.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"35 4","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77901872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the Dynamics of a Coating Flow on a Vertical Fiber Immersed in Surrounding Liquid Phase 垂直光纤在周围液相中的涂层流动动力学研究
IF 1.8 4区 工程技术
Microgravity Science and Technology Pub Date : 2023-08-01 DOI: 10.1007/s12217-023-10064-x
Yufeng Zhang, Rong Liu, Xue Chen
{"title":"Investigation of the Dynamics of a Coating Flow on a Vertical Fiber Immersed in Surrounding Liquid Phase","authors":"Yufeng Zhang, Rong Liu, Xue Chen","doi":"10.1007/s12217-023-10064-x","DOIUrl":"https://doi.org/10.1007/s12217-023-10064-x","url":null,"abstract":"","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"128 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87631352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信