{"title":"在微重力条件下反复跳跃时,Hifim 跳跃橇对力和振动传播的缓解作用","authors":"Daniel J Cleather, John E Kennett","doi":"10.1007/s12217-024-10126-8","DOIUrl":null,"url":null,"abstract":"<div><p>High Frequency Impulse for Microgravity (HIFIm) is an exercise countermeasure that is designed to minimize force and vibration transmission to the spacecraft during exercise without the need for an additional VIS. The purpose of this study was to evaluate the effectiveness of HIFIm in mitigating force transmission in microgravity during parabolic flight. Force between HIFIm and the aircraft was measured using a custom-made arrangement of load cells during repeated jumping by two participants. Mean peak force transmission to the aircraft was 4.79 ± 0.68 N.kg<sup>− 1</sup>. In addition, the frequency spectra for the upper and lower fixations to the aircraft were within the envelope of what is permissible for an exercise countermeasure on Gateway. These data support the design concept of HIFIm and suggest that HIFIm could be installed in a space habitat with no, or minimal, additional VIS. Measuring the force and vibration transmission of exercise countermeasures in microgravity during parabolic flight is highly challenging due to the safety constraints of the experimental platform and the extreme changes in acceleration (from 0 to 1.8 g). The fact that this performance can be directly measured for HIFIm is a key advantage. The results presented here add to the mounting evidence that HIFIm is the future of exercise countermeasures.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigation of Force and Vibration Transmission by the Hifim Jump Sled during Repeated Jumping in Microgravity\",\"authors\":\"Daniel J Cleather, John E Kennett\",\"doi\":\"10.1007/s12217-024-10126-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High Frequency Impulse for Microgravity (HIFIm) is an exercise countermeasure that is designed to minimize force and vibration transmission to the spacecraft during exercise without the need for an additional VIS. The purpose of this study was to evaluate the effectiveness of HIFIm in mitigating force transmission in microgravity during parabolic flight. Force between HIFIm and the aircraft was measured using a custom-made arrangement of load cells during repeated jumping by two participants. Mean peak force transmission to the aircraft was 4.79 ± 0.68 N.kg<sup>− 1</sup>. In addition, the frequency spectra for the upper and lower fixations to the aircraft were within the envelope of what is permissible for an exercise countermeasure on Gateway. These data support the design concept of HIFIm and suggest that HIFIm could be installed in a space habitat with no, or minimal, additional VIS. Measuring the force and vibration transmission of exercise countermeasures in microgravity during parabolic flight is highly challenging due to the safety constraints of the experimental platform and the extreme changes in acceleration (from 0 to 1.8 g). The fact that this performance can be directly measured for HIFIm is a key advantage. The results presented here add to the mounting evidence that HIFIm is the future of exercise countermeasures.</p></div>\",\"PeriodicalId\":707,\"journal\":{\"name\":\"Microgravity Science and Technology\",\"volume\":\"36 4\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microgravity Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-024-10126-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10126-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Mitigation of Force and Vibration Transmission by the Hifim Jump Sled during Repeated Jumping in Microgravity
High Frequency Impulse for Microgravity (HIFIm) is an exercise countermeasure that is designed to minimize force and vibration transmission to the spacecraft during exercise without the need for an additional VIS. The purpose of this study was to evaluate the effectiveness of HIFIm in mitigating force transmission in microgravity during parabolic flight. Force between HIFIm and the aircraft was measured using a custom-made arrangement of load cells during repeated jumping by two participants. Mean peak force transmission to the aircraft was 4.79 ± 0.68 N.kg− 1. In addition, the frequency spectra for the upper and lower fixations to the aircraft were within the envelope of what is permissible for an exercise countermeasure on Gateway. These data support the design concept of HIFIm and suggest that HIFIm could be installed in a space habitat with no, or minimal, additional VIS. Measuring the force and vibration transmission of exercise countermeasures in microgravity during parabolic flight is highly challenging due to the safety constraints of the experimental platform and the extreme changes in acceleration (from 0 to 1.8 g). The fact that this performance can be directly measured for HIFIm is a key advantage. The results presented here add to the mounting evidence that HIFIm is the future of exercise countermeasures.
期刊介绍:
Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity.
Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges).
Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are:
− materials science
− fluid mechanics
− process engineering
− physics
− chemistry
− heat and mass transfer
− gravitational biology
− radiation biology
− exobiology and astrobiology
− human physiology