在微重力条件下反复跳跃时,Hifim 跳跃橇对力和振动传播的缓解作用

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Daniel J Cleather, John E Kennett
{"title":"在微重力条件下反复跳跃时,Hifim 跳跃橇对力和振动传播的缓解作用","authors":"Daniel J Cleather,&nbsp;John E Kennett","doi":"10.1007/s12217-024-10126-8","DOIUrl":null,"url":null,"abstract":"<div><p>High Frequency Impulse for Microgravity (HIFIm) is an exercise countermeasure that is designed to minimize force and vibration transmission to the spacecraft during exercise without the need for an additional VIS. The purpose of this study was to evaluate the effectiveness of HIFIm in mitigating force transmission in microgravity during parabolic flight. Force between HIFIm and the aircraft was measured using a custom-made arrangement of load cells during repeated jumping by two participants. Mean peak force transmission to the aircraft was 4.79 ± 0.68 N.kg<sup>− 1</sup>. In addition, the frequency spectra for the upper and lower fixations to the aircraft were within the envelope of what is permissible for an exercise countermeasure on Gateway. These data support the design concept of HIFIm and suggest that HIFIm could be installed in a space habitat with no, or minimal, additional VIS. Measuring the force and vibration transmission of exercise countermeasures in microgravity during parabolic flight is highly challenging due to the safety constraints of the experimental platform and the extreme changes in acceleration (from 0 to 1.8 g). The fact that this performance can be directly measured for HIFIm is a key advantage. The results presented here add to the mounting evidence that HIFIm is the future of exercise countermeasures.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigation of Force and Vibration Transmission by the Hifim Jump Sled during Repeated Jumping in Microgravity\",\"authors\":\"Daniel J Cleather,&nbsp;John E Kennett\",\"doi\":\"10.1007/s12217-024-10126-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High Frequency Impulse for Microgravity (HIFIm) is an exercise countermeasure that is designed to minimize force and vibration transmission to the spacecraft during exercise without the need for an additional VIS. The purpose of this study was to evaluate the effectiveness of HIFIm in mitigating force transmission in microgravity during parabolic flight. Force between HIFIm and the aircraft was measured using a custom-made arrangement of load cells during repeated jumping by two participants. Mean peak force transmission to the aircraft was 4.79 ± 0.68 N.kg<sup>− 1</sup>. In addition, the frequency spectra for the upper and lower fixations to the aircraft were within the envelope of what is permissible for an exercise countermeasure on Gateway. These data support the design concept of HIFIm and suggest that HIFIm could be installed in a space habitat with no, or minimal, additional VIS. Measuring the force and vibration transmission of exercise countermeasures in microgravity during parabolic flight is highly challenging due to the safety constraints of the experimental platform and the extreme changes in acceleration (from 0 to 1.8 g). The fact that this performance can be directly measured for HIFIm is a key advantage. The results presented here add to the mounting evidence that HIFIm is the future of exercise countermeasures.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-024-10126-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10126-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

微重力高频脉冲(HIFIm)是一种运动对策,旨在最大限度地减少运动过程中向航天器传递的力和振动,而无需额外的VIS。本研究的目的是评估 HIFIm 在抛物线飞行期间减轻微重力力传递的有效性。在两名参与者反复跳跃的过程中,使用定制的称重传感器测量了 HIFIm 和飞行器之间的力。传递到飞行器的平均峰值力为 4.79 ± 0.68 N.kg- 1。此外,对飞行器的上下固定频谱也在 Gateway 上的运动对策所允许的范围内。这些数据支持 HIFIm 的设计理念,并表明 HIFIm 可以安装在太空栖息地中,而无需或仅需少量额外的 VIS。由于实验平台的安全限制和加速度的剧烈变化(从 0 g 到 1.8 g),在抛物线飞行过程中测量微重力下运动对策的力和振动传输具有很高的挑战性。可以直接测量 HIFIm 的这种性能是一个关键优势。本文介绍的结果进一步证明,HIFIm 是未来的运动对抗措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mitigation of Force and Vibration Transmission by the Hifim Jump Sled during Repeated Jumping in Microgravity

Mitigation of Force and Vibration Transmission by the Hifim Jump Sled during Repeated Jumping in Microgravity

Mitigation of Force and Vibration Transmission by the Hifim Jump Sled during Repeated Jumping in Microgravity

High Frequency Impulse for Microgravity (HIFIm) is an exercise countermeasure that is designed to minimize force and vibration transmission to the spacecraft during exercise without the need for an additional VIS. The purpose of this study was to evaluate the effectiveness of HIFIm in mitigating force transmission in microgravity during parabolic flight. Force between HIFIm and the aircraft was measured using a custom-made arrangement of load cells during repeated jumping by two participants. Mean peak force transmission to the aircraft was 4.79 ± 0.68 N.kg− 1. In addition, the frequency spectra for the upper and lower fixations to the aircraft were within the envelope of what is permissible for an exercise countermeasure on Gateway. These data support the design concept of HIFIm and suggest that HIFIm could be installed in a space habitat with no, or minimal, additional VIS. Measuring the force and vibration transmission of exercise countermeasures in microgravity during parabolic flight is highly challenging due to the safety constraints of the experimental platform and the extreme changes in acceleration (from 0 to 1.8 g). The fact that this performance can be directly measured for HIFIm is a key advantage. The results presented here add to the mounting evidence that HIFIm is the future of exercise countermeasures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信