Microgravity Science and Technology最新文献

筛选
英文 中文
Solutal and Gravitational Effects during Binary Mixture Droplets Evaporation 二元混合物液滴蒸发过程中的溶解和重力效应
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-03-14 DOI: 10.1007/s12217-024-10105-z
Xiaoyan Ma, Khellil Sefiane, Rachid Bennacer, Xavier Lapert, Farid Bakir
{"title":"Solutal and Gravitational Effects during Binary Mixture Droplets Evaporation","authors":"Xiaoyan Ma,&nbsp;Khellil Sefiane,&nbsp;Rachid Bennacer,&nbsp;Xavier Lapert,&nbsp;Farid Bakir","doi":"10.1007/s12217-024-10105-z","DOIUrl":"10.1007/s12217-024-10105-z","url":null,"abstract":"<div><p>For small droplets undergoing phase change, gravity is generally considered negligible. In the case of binary droplets evaporation, convective flows can be induced due to various mechanisms, such as continuity, buoyancy and/or selective evaporation of one of the components. Convection can also be induced by surface tension gradients resulting from concentration variations along the interface. This study presents experimental results of evaporation for binary mixture droplets. We concurrently investigate sessile and pendant droplets to assess gravity’s impact on binary droplet evaporation. We examine compositions including, pure butanol, pure methanol, pure water, and 50% per volume mixtures of water-butanol and water-methanol, evaporating in a controlled atmosphere. In the case of water-butanol mixtures, the drops contact line ‘depins’ during the evaporation process whereas the case of water-methanol mixture, the contact line of the drops remains pinned most of the lifetimes. The analysis of the evaporation dynamics reveals differences in the evaporation of these two mixtures and the effect of orientation (gravity). For water-butanol mixtures the evaporation occurs in four stages linked to preferential evaporation of the more volatile component and the ensuing surface tension gradients. In the case of water-methanol mixtures, contact lines tend to be pinned during most of the lifetimes of drops. The evaporation rate of the mixture is found to be between the ones of the pure components, i.e. water and methanol. The case of sessile drops exhibits a slight enhancement in evaporation rate in the case of the sessile configuration compared to the pendant one for pure water and mixture cases, which is explained by density differences and buoyancy driven flows. Solutal Marangoni flows in the case of water-methanol mixtures are deemed weaker compared to water-butanol ones. The use of the two mixtures allowed to have a good comparison between two cases where solutal-Marangoni effect can be strong (water-butanol) and weak (water- methanol) influence. The densities of the two organic liquids also highlighted gravitational effect due to the large difference in vapor densities.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 2","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140125167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tracking the Motion of an Intruder Particle in a Three-Dimensional Granular Bed On-board the Chinese Space Station 在中国空间站上跟踪入侵粒子在三维颗粒床中的运动情况
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-03-07 DOI: 10.1007/s12217-024-10102-2
Ke Cheng, Meiying Hou, Tuo Li, Zhihong Qiao, Peng Liu, Jianzhi Ding, Wei Sun, Yuman Li, Fade Gao, Xiang Li, Mingcheng Yang
{"title":"Tracking the Motion of an Intruder Particle in a Three-Dimensional Granular Bed On-board the Chinese Space Station","authors":"Ke Cheng,&nbsp;Meiying Hou,&nbsp;Tuo Li,&nbsp;Zhihong Qiao,&nbsp;Peng Liu,&nbsp;Jianzhi Ding,&nbsp;Wei Sun,&nbsp;Yuman Li,&nbsp;Fade Gao,&nbsp;Xiang Li,&nbsp;Mingcheng Yang","doi":"10.1007/s12217-024-10102-2","DOIUrl":"10.1007/s12217-024-10102-2","url":null,"abstract":"<div><p>Three-dimensional (3D) particle tracking is a challenging task in dense granular systems. Magnetic particle tracking has been developed in recent years to reconstruct a tracer’s trajectory in granular systems. The method can be low-cost, compact, and flexible. In this work we applied a Hall sensor array method to track the trajectories of a magnetic intruder particle in a 3D granular bed in the centrifuge of the Chinese Space Station (CSS). We present a developed algorithm. By placing sensors in an array in a same plane, our algorithm can exclude the interference of varying external field. The method’s static accuracy can reach 0.02 cm, and the maximum deviation of our measurement from a known path is also checked to be 0.02 cm. On CSS, two independent sensor arrays are used to cross-check the accuracy of the method. The two measured trajectories are well overlapped. This confirms the method’s reliability and robustness of tracking an intruder in a dense granular bed.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 2","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140072131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Rotating Magnetic Field on the Thermocapillary Flow Instability in a Liquid Bridge 旋转磁场对液桥中热毛细管流动不稳定性的影响
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-03-07 DOI: 10.1007/s12217-024-10098-9
Qiulin Li, Shiliang Zhou, Shicheng Li, Jinchao He, Hao Liu
{"title":"Effect of Rotating Magnetic Field on the Thermocapillary Flow Instability in a Liquid Bridge","authors":"Qiulin Li,&nbsp;Shiliang Zhou,&nbsp;Shicheng Li,&nbsp;Jinchao He,&nbsp;Hao Liu","doi":"10.1007/s12217-024-10098-9","DOIUrl":"10.1007/s12217-024-10098-9","url":null,"abstract":"<div><p>The stability of thermocapillary flow in a liquid bridge under a transverse rotating magnetic field (RMF) was numerically investigated by the linear stability analysis using the spectral element method. Three commonly used RMF models, namely, the infinite model, the simplified finite model and the <i>Φ</i><sub>1</sub>-<i>Φ</i><sub>2</sub> model, are employed to describe the RMF and their results are compared. Additionally, for the <i>Φ</i><sub>1</sub>-<i>Φ</i><sub>2</sub> model, the uniform and non-uniform RMF were also compared. The numerical results show that with the increase of magnetic Taylor number <i>Ta</i>, the critical Marangoni number (<i>Ma</i><sub><i>c</i></sub>) for the three RMF models increases firstly, then decreases sharply to a minimum, finally increases again when the RMF is strong enough to suppress the radial and axial convection induced by thermocapillary force. Two transitions between the wavenumber <i>k=</i>1 and <i>k=</i>2 mode are observed with increasing <i>Ta</i>. The results obtained by the simplified finite model are in good agreement with those of the <i>Φ</i><sub>1</sub>-<i>Φ</i><sub>2</sub> model, however, the infinite model has a significant deviation compared to the <i>Φ</i><sub>1</sub>-<i>Φ</i><sub>2</sub> model. Besides, the results indicate that the non-uniform RMF has a relatively weak action compared with the uniform RMF.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 2","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140072226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Action of One-dimensional Spatial Temperature Modulation on Dynamics of a Floating Droplet Heated from Below 一维空间温度调制对自下而上加热的漂浮液滴动力学的影响
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-03-02 DOI: 10.1007/s12217-024-10103-1
Ilya Simanovskii, Alexander Nepomnyashchy, Antonio Viviani, Patrick Queeckers
{"title":"The Action of One-dimensional Spatial Temperature Modulation on Dynamics of a Floating Droplet Heated from Below","authors":"Ilya Simanovskii,&nbsp;Alexander Nepomnyashchy,&nbsp;Antonio Viviani,&nbsp;Patrick Queeckers","doi":"10.1007/s12217-024-10103-1","DOIUrl":"10.1007/s12217-024-10103-1","url":null,"abstract":"<div><p>The dynamics of a droplet on a liquid substrate in the case of an inhomogeneous heating from below has been investigated. The problem is studied numerically in the framework of the slender droplet approximation and the precursor model. The change of the stationary droplet’s shape and the rupture of the substrate layer induced by a floating droplet are investigated. The influence of the gravity force on the shape of the droplet is studied.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 2","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140016610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlling a Free Surface With Thermocapillary Flows and Vibrations in Microgravity 在微重力环境下利用热毛细管流动和振动控制自由表面
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-02-17 DOI: 10.1007/s12217-024-10099-8
Jose Plaza, Dan Gligor, Pablo Salgado Sánchez, Jacobo Rodríguez, Karl Olfe
{"title":"Controlling a Free Surface With Thermocapillary Flows and Vibrations in Microgravity","authors":"Jose Plaza,&nbsp;Dan Gligor,&nbsp;Pablo Salgado Sánchez,&nbsp;Jacobo Rodríguez,&nbsp;Karl Olfe","doi":"10.1007/s12217-024-10099-8","DOIUrl":"10.1007/s12217-024-10099-8","url":null,"abstract":"<div><p>Fluid manipulation and control is crucial for space exploration. Motivated by the “Thermocapillary-based control of a free surface in microgravity\" (ThermoSlosh) experiment (Salgado Sánchez et al. in Acta Astronautica 205:57–67, 2023), we conduct here a detailed numerical analysis of interfacial dynamics in a two-dimensional cylindrical cell, half-filled with different silicone oils or a fluorinert, and subjected to thermal forcing and vibrations. The effect on the free surface dynamics of the applied temperature difference, vibrational amplitude, fluid viscosity, and contact angle is analyzed; both static and dynamic contact angle models are considered. Results strongly suggest that thermocapillary flows can be used to control the interface orientation within the cell, while supplemental vibrations can be added to increase the system responsiveness. This control can be further improved by using classical proportional-integral-derivative feedback to adjust the cell boundary temperatures in real-time. The proportional and derivative gains of the controller can be selected to optimize the stabilization time and/or energy cost, while the integral contribution is effective in reducing the steady-state error. Overall, the present analysis highlights the potential of using the thermocapillary effect for fluid management in reduced gravity, and evaluates different types of experimental tests that can be executed in the frame of the ThermoSlosh microgravity project.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 2","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12217-024-10099-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139751915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Friction Properties of Journal-bearing-like Conformal Contacts in Microgravity Environment 微重力环境下类似滑动轴承的共形接触的摩擦特性
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-02-16 DOI: 10.1007/s12217-024-10096-x
Shujia Wan, Bing Han, Li He, Ruiting Tong, Jingyan Wang, Baobao Qiang, Menghe Zhou
{"title":"Friction Properties of Journal-bearing-like Conformal Contacts in Microgravity Environment","authors":"Shujia Wan,&nbsp;Bing Han,&nbsp;Li He,&nbsp;Ruiting Tong,&nbsp;Jingyan Wang,&nbsp;Baobao Qiang,&nbsp;Menghe Zhou","doi":"10.1007/s12217-024-10096-x","DOIUrl":"10.1007/s12217-024-10096-x","url":null,"abstract":"<div><p>Friction is a primary failure mode in micro-nano electromechanical systems due to the high surface-to-volume ratio. Microgravity further complicates this issue in journal-bearing-like conformal contacts by promoting irregular disturbances. This paper aims to gain insights into the anti-friction design of journal-bearing-like devices through molecular dynamics simulation. A molecular dynamics model was proposed and the calculation method of the friction force was derived. In the absence of disturbance, the proposed model was compared with a non-conformal model which unfolded the bearing as a plane, and the influence of initial radial clearance and axis inclination on the friction force was investigated. The results showed that the proposed model could present more accurate friction forces than the non-conformal model. The friction force was inversely proportional to the initial clearance, and the axis inclination could reduce the friction force. Regarding disturbances as the superposition of two vibrations perpendicular to each other, in which case the trajectory of the journal was a Lissajous curve, the effects of frequency, stiffness coefficient, amplitude ratio, and frequency ratio were investigated. The results showed that the average friction force increased with the rising frequency in the range of 0.8 ~ 4.8 GHz, then decreased with the further increase of frequency. The average friction force was lowered when the stiffness coefficient increased from 100N/m to 1000N/m. For two representative frequencies, the average friction force exhibited different trends with the amplitude ratio. Except for the case of 1.25, increasing the frequency ratio could reduce the friction force. It seemed that applying a well-designed Lissajous route was a promising way to reduce friction.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 2","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139751922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Profiles of free Surfaces in Revolved Containers Under Microgravity 微重力下旋转容器中自由表面的轮廓
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-02-15 DOI: 10.1007/s12217-023-10093-6
Shuyang Chen, Li Duan, Wen Li, Shangtong Chen, Qi Kang
{"title":"Profiles of free Surfaces in Revolved Containers Under Microgravity","authors":"Shuyang Chen,&nbsp;Li Duan,&nbsp;Wen Li,&nbsp;Shangtong Chen,&nbsp;Qi Kang","doi":"10.1007/s12217-023-10093-6","DOIUrl":"10.1007/s12217-023-10093-6","url":null,"abstract":"<div><p>Nowadays a propellant residual gauging method based on the thermal response of the tanks’ wall is developed. And the liquid distribution and meniscus height have great effects on the thermal response. Profiles of liquid free surfaces in revolved containers under microgravity are studied through theoretical analysis and numerical simulation in this paper. The analytical formula for the static profile of the liquid surface in the spherical tank is established. It shows that the profile is a section of a circle cut off by the tank wall. For given the geometry of the tank, liquid volume and contact angle, the profile of the free surfaces under microgravity can be obtained by using the Shooting method based on the theoretical model. Numerical simulation is carried out with the Volume of Fluid method, and it is verified that the static profiles at different contact angles and liquid filling rates fit the theoretical descriptions. It is concluded that the meniscus height increases slowly as the filling rate increases, and the smaller the contact angle, the more obvious this trend. Then the theory is extended to the tanks of arbitrary shapes, and the critical position of the profile is derived. Below the critical position the propellant may accumulate in some corners or pits, which makes it unable to be fully utilized. The critical position is related to the shape of the tank and the contact angle. This research is of great value for the prediction of the static profiles of liquid surfaces in tanks and the propellant residual gauging.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139751666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability of One-Dimensional Vertical Flow Through a Porous Domain Under Pumping of a Finite Volume of Impurity 在抽吸有限体积杂质的情况下,一维垂直流经多孔域的稳定性
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-02-15 DOI: 10.1007/s12217-023-10089-2
Boris S. Maryshev, Lyudmila S. Klimenko, Nikolay V. Kolchanov
{"title":"Stability of One-Dimensional Vertical Flow Through a Porous Domain Under Pumping of a Finite Volume of Impurity","authors":"Boris S. Maryshev,&nbsp;Lyudmila S. Klimenko,&nbsp;Nikolay V. Kolchanov","doi":"10.1007/s12217-023-10089-2","DOIUrl":"10.1007/s12217-023-10089-2","url":null,"abstract":"<div><p>The problem of stability of one-dimensional filtration flow in a rectangular domain of porous medium is solved. The flow occurs when a portion of impurity is transported through the region against gravity. It is shown that the instability has an absolute character. A Rayleigh-Taylor instability is observed at the backward front of the concentration pulse. In this case, the observation time is always less than the passage time of the pulse through the domain. A theoretical model is proposed to describe this phenomenon taking into account immobilization and clogging. The influence of the problem parameters on the characteristic time of instability onset is investigated. Comparison of computational results with experimental data has shown the appropriateness of the chosen model. The ways of increasing this time are analyzed. It is shown that only one way to increase the instability time is to significantly reduce the buoyancy force impact. The latter force can be diminish by alteration of the gravity force.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139751914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pressure Drop Predicting Model for Gas and Oil-Based Drilling Fluid Two Phase Flow in Vertical Annulus 垂直环空天然气和石油钻井液两相流压降预测模型
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-01-24 DOI: 10.1007/s12217-023-10090-9
Bangtang Yin, Tianbao Ding, Xuxin Zhang, Zhiyuan Wang, Baojiang Sun
{"title":"Pressure Drop Predicting Model for Gas and Oil-Based Drilling Fluid Two Phase Flow in Vertical Annulus","authors":"Bangtang Yin,&nbsp;Tianbao Ding,&nbsp;Xuxin Zhang,&nbsp;Zhiyuan Wang,&nbsp;Baojiang Sun","doi":"10.1007/s12217-023-10090-9","DOIUrl":"10.1007/s12217-023-10090-9","url":null,"abstract":"<div><p>Blowout is among catastrophic accidents in oil and gas drilling, and it is caused by abnormal pressure resulted from gas kick from reservoir which cannot be prevented due to limits of drilling technology. Accurate prediction of wellbore pressure is an effective method to prevent blowout. Based on electrical capacitance volume tomography (ECVT), the experiments of gas and white oil two-phase flow with viscosity of 16 mPa·s, 23 mPa·s, 26 mPa·s and 39 mPa·s in vertical annulus are carried, and the pressure drop in vertical annulus is tested. Considering the influence of viscosity, modification of the friction loss coefficient and prediction of the pressure gradient in bubble flow, slug flow and churn flow are studied. The prediction accuracy of the modified model is compared with the pressure gradient model established in the Caetano’s experiment (air-kerosene, ID 42.2 mm and OD 76.2 mm). The results show that under the Caetano’s experimental conditions and the experimental conditions of this experiment, the maximum error and the prediction mean absolute error of the pressure gradient model with the corrected friction loss coefficient are lower than those of Caetano’s model.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139554045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissipation Behaviors of Vibrated Granular Balls in Different Gravity Environments 不同重力环境下振动颗粒球的耗散行为
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-01-24 DOI: 10.1007/s12217-024-10097-w
Kai Zhang, Meng Chen, Farong Kou, Wenzhe Li
{"title":"Dissipation Behaviors of Vibrated Granular Balls in Different Gravity Environments","authors":"Kai Zhang,&nbsp;Meng Chen,&nbsp;Farong Kou,&nbsp;Wenzhe Li","doi":"10.1007/s12217-024-10097-w","DOIUrl":"10.1007/s12217-024-10097-w","url":null,"abstract":"<div><p>The dissipation behavior of granular balls in a quasi-2D closed container subjected to vertical vibration is studied by means of discrete element method in this paper. Four universal granular phases playing high damping effect are finalized by simulating the gravity environments of Earth, Mars and Moon, respectively. Based on the commonality of dense granular clusters in the four high damping granular phases, the ideal dissipation behavior of granular balls in the quasi-2D closed container is indicated. Moreover, the optimal damping mechanism of granular balls in the quasi-2D vibrated closed container is further revealed by analyzing the differences of kinetic energy and potential energy of vibrated granular balls in the three different gravity environments. This study lays a foundation for maximizing the damping effect of vibrated granular materials with constant mass by controlling their dissipation behavior, which provides a new idea for the universal design of granular damping structures in engineering practice.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139553976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信