Luciana Pereira Simões, Carlos Renato dos Santos, Alison Moraes
{"title":"亚轨道飞行器应用中锂离子电池适用性和安全性的拟议评估方法","authors":"Luciana Pereira Simões, Carlos Renato dos Santos, Alison Moraes","doi":"10.1007/s12217-024-10110-2","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium-ion batteries are a feasible solution to store energy efficiently. However, in safety-critical environments such as the suborbital rockets, the introduced technologies do not may compromise safety. This research explores the possibility of replacing Ni-MH batteries with Li-ion batteries. However, before replacing technologies, the reliability of Li-ion cells needs to be evaluated, and the potential benefits must be considered against the risks to ensure the mission’s success. The main objective is to ensure the safety and integrity of suborbital missions during the technology transition. To assess the technology exchange, a method where the battery cell experiences a sequence of tests that cover aspects of safety encountered during the vehicle missions, such as vacuum, capacity, short circuit behavior, over-current discharge, behavior at higher environment temperature, and pulsed discharge behavior. To experience the proposed method, two Li-ion cells commercial off-the-shelf (COTS) from different manufacturers are evaluated. The results indicated that only one of the two cell models evaluated can substitute the Ni-MH. This research concludes that replacing Ni-MH cells with Li-ion cells is feasible, for such an application. The proposed acceptance flow design based on the test collectively validates the replacement, showing that the Li-ion cells can offer reliability, safety, and efficiency to suborbital vehicles to fulfill this mission profile.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Proposed Methodology for Assessment of Li-ion Cell Suitability and Safety for Suborbital Vehicle Applications\",\"authors\":\"Luciana Pereira Simões, Carlos Renato dos Santos, Alison Moraes\",\"doi\":\"10.1007/s12217-024-10110-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lithium-ion batteries are a feasible solution to store energy efficiently. However, in safety-critical environments such as the suborbital rockets, the introduced technologies do not may compromise safety. This research explores the possibility of replacing Ni-MH batteries with Li-ion batteries. However, before replacing technologies, the reliability of Li-ion cells needs to be evaluated, and the potential benefits must be considered against the risks to ensure the mission’s success. The main objective is to ensure the safety and integrity of suborbital missions during the technology transition. To assess the technology exchange, a method where the battery cell experiences a sequence of tests that cover aspects of safety encountered during the vehicle missions, such as vacuum, capacity, short circuit behavior, over-current discharge, behavior at higher environment temperature, and pulsed discharge behavior. To experience the proposed method, two Li-ion cells commercial off-the-shelf (COTS) from different manufacturers are evaluated. The results indicated that only one of the two cell models evaluated can substitute the Ni-MH. This research concludes that replacing Ni-MH cells with Li-ion cells is feasible, for such an application. The proposed acceptance flow design based on the test collectively validates the replacement, showing that the Li-ion cells can offer reliability, safety, and efficiency to suborbital vehicles to fulfill this mission profile.</p></div>\",\"PeriodicalId\":707,\"journal\":{\"name\":\"Microgravity Science and Technology\",\"volume\":\"36 3\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microgravity Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-024-10110-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10110-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
A Proposed Methodology for Assessment of Li-ion Cell Suitability and Safety for Suborbital Vehicle Applications
Lithium-ion batteries are a feasible solution to store energy efficiently. However, in safety-critical environments such as the suborbital rockets, the introduced technologies do not may compromise safety. This research explores the possibility of replacing Ni-MH batteries with Li-ion batteries. However, before replacing technologies, the reliability of Li-ion cells needs to be evaluated, and the potential benefits must be considered against the risks to ensure the mission’s success. The main objective is to ensure the safety and integrity of suborbital missions during the technology transition. To assess the technology exchange, a method where the battery cell experiences a sequence of tests that cover aspects of safety encountered during the vehicle missions, such as vacuum, capacity, short circuit behavior, over-current discharge, behavior at higher environment temperature, and pulsed discharge behavior. To experience the proposed method, two Li-ion cells commercial off-the-shelf (COTS) from different manufacturers are evaluated. The results indicated that only one of the two cell models evaluated can substitute the Ni-MH. This research concludes that replacing Ni-MH cells with Li-ion cells is feasible, for such an application. The proposed acceptance flow design based on the test collectively validates the replacement, showing that the Li-ion cells can offer reliability, safety, and efficiency to suborbital vehicles to fulfill this mission profile.
期刊介绍:
Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity.
Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges).
Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are:
− materials science
− fluid mechanics
− process engineering
− physics
− chemistry
− heat and mass transfer
− gravitational biology
− radiation biology
− exobiology and astrobiology
− human physiology