Yi Wang, Hongchu Wang, Zhuyu Yang, Yinru Chen, Duo Wai-Chi Wong, Wing-Kai Lam
{"title":"Research Trends on Astronaut Physical Training as Countermeasures: A Bibliometric Analysis from Past 30 Years","authors":"Yi Wang, Hongchu Wang, Zhuyu Yang, Yinru Chen, Duo Wai-Chi Wong, Wing-Kai Lam","doi":"10.1007/s12217-024-10124-w","DOIUrl":"10.1007/s12217-024-10124-w","url":null,"abstract":"<div><p>Astronauts are exposed to microgravity-induced health problems in spaceflight missions. Countermeasures and physical exercises have received increasing attention and its current research trends and landscapes warranted investigation. We conducted a comprehensive bibliometric analysis on astronaut training/countermeasures using the available data from the Web of Science Core Collection database from 1992 to 2022 to summarize the research trends and identify future directions. A total of 1,520 relevant articles were identified. Annual publications of the field have been increased over the years with the emergence of new and effective countermeasures. ‘Microgravity’ was the centered hotspot surrounded by the topics included ‘spaceflight’, ‘hind leg hanging’, ‘simulated microgravity’, and ‘simulated weightlessness’. The top countries that produced the most publications included United States (726 articles), Germany (129 articles), and France (84 articles). The United States played a dominant role in the collaboration network with other countries. Meanwhile, NASA from the United States led the global collaborations and dominated the literature. Future research trend might lie on the design of physical training exercises to tackle the potential health problems on osteoporosis, muscle atrophy, and abnormality on the nervous and cardiovascular system; and artificial/simulated gravity with interdisciplinary sports countermeasure research on physiology, brain science, biomechanics, and aerospace medicine.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuyang Chen, Shangtong Chen, Di Wu, Li Duan, Xiaozhong Liu, Xilin Zhao, Pu Zha, Chao Yang, Liang Hu, Jia Wang, Yifan Zhao, Yongli Yin, Qi Kang
{"title":"Study on Liquid Climbing Behavior During Filling Process in Tank Models Aboard the Chinese Space Station","authors":"Shuyang Chen, Shangtong Chen, Di Wu, Li Duan, Xiaozhong Liu, Xilin Zhao, Pu Zha, Chao Yang, Liang Hu, Jia Wang, Yifan Zhao, Yongli Yin, Qi Kang","doi":"10.1007/s12217-024-10123-x","DOIUrl":"10.1007/s12217-024-10123-x","url":null,"abstract":"<div><p>Propellant tanks provide non-entrained propellant for thrusters of satellites, which plays an important role in space mission. And the fluid transfer efficiency of tanks is the key to supply non-entrained propellant. An experiment cabin containing two different scaled tank models are designed and experiments of liquid reorientation under microgravity are carried out in the Chinese Space Station. Experiment results present the high liquid transportation efficiency of the two kinds of propellant management devices. Finite element models of the two tank models are established and verified by simulation matching with experiments. Furthermore, methylhydrazine is adopted to carry out more simulation analysis by considering different liquid contact angles and surface tension, and numerical results show smaller liquid contact angle and bigger surface tension can increase liquid flow speed. This research can provide theory and data support for the design of plate type tanks.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Perspective Review of Droplets and Bubbles Formation in Microfluidics","authors":"Wenbo Han, Xin Wang, Yu Liu, Chenzhao Bai, Wei Li, Hongpeng Zhang","doi":"10.1007/s12217-024-10120-0","DOIUrl":"10.1007/s12217-024-10120-0","url":null,"abstract":"<div><p>Gas-liquid and liquid-liquid two-phase flow are widely used in chemical engineering, biomedical engineering and other fields such as separation, reaction, and mass transfer in microfluidic systems. Studying the formation methods of droplets and bubbles in microfluidics is of great significance to the application of microchemical technology. In this review, according to the methods of droplets and bubbles formation, the research progress and development trend of droplets and bubbles formation in microfluidics in recent years are reviewed. Formation methods are divided into passive methods and active methods according to whether external energy is required. Passive methods include T-junction, flow-focusing, co-flowing and step emulsification. Active methods include surface acoustic waves, DC/AC electric fields, magnetic fields, and thermal fields. Finally, this review points out the future direction of research on liquid droplets and bubbles. This review sheds new light on monodisperses, highly controllable droplets and bubbles formation and its applications.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 3","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141348098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental Study of the Dynamics of Coating Flow on Fiber Array","authors":"Bin Wang, Rong Liu","doi":"10.1007/s12217-024-10121-z","DOIUrl":"10.1007/s12217-024-10121-z","url":null,"abstract":"<div><p>The present paper investigated the dynamics of coating flow on array of cylindrical fibres. In the experiments, it is observed that there exist three distinct flow regimes when the fiber array is fully coated by liquid film, namely, regime ‘a’, ‘b’ and ‘c’. The flow regime ‘a’ is characterized by the formation of a streamwise uniform film; The flow regime ‘b’ and ‘c’ are in the form of traveling waves consisting of asymmetrical wavy structures and symmetrical beads, respectively. We conducted a comprehensive parametric study on the dynamics of the coating flow on fiber array, including the flow rate, fiber spacing and droplet amplitude, all of which serve as reliable indicators of different flow regimes.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 3","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141372580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of Multiple Scales Method to the Problem About Characteristics of the Ionic Layer Near The Surface of Lithium Niobate Crystal in a Benzoic Acid Melt","authors":"Vitaly Demin, Maxim Petukhov","doi":"10.1007/s12217-024-10113-z","DOIUrl":"10.1007/s12217-024-10113-z","url":null,"abstract":"<div><p>The authors present an analytical solution of equations describing the diffusion transfer and recombination of positive lithium ions and negative benzoate ions in benzoic acid after their injection from the surface of a protonated lithium niobate substrate. In the course of the solving one-dimensional stationary problem, the profiles of ions concentrations and electric potential distribution have obtained, corresponding to different values of governing parameters. The benzoate ions form thin boundary layer, while the ions of lithium completely fill considered region and have relatively uniform distribution. The comparison of analytical solution with numerical results permits to estimate the degree of the influence of electric field on the final distributions, which is formed due to the difference of ions concentrations. The expression, which determines the thickness of boundary layer, is obtained by the multiple scales method.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 3","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141150356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Auditory Go/NoGo Task in the Dry Immersion Model of Microgravity","authors":"Ivan E. Lazarev","doi":"10.1007/s12217-024-10118-8","DOIUrl":"10.1007/s12217-024-10118-8","url":null,"abstract":"<div><p>The effects of a ground-based model of microgravity on executive functions (namely, inhibition) were investigated in this study. Volunteers participated in so-called dry immersion (DI), during which they spent 21 days in a water-filled tub in the supine position. During this period, they performed an auditory Go/NoGo task while multichannel EEG activity was recorded. The Go/NoGo task was performed one time outside of the DI and two times during the stay in the DI. ERPs were computed on correct NoGo and Go trials. While no behavioral deterioration of the Go/NoGo task was found during their stay in the DI, a significant difference was found in amplitudes between NoGo N2 ERP peaks before DI and during DI. The N2 peak was smaller on the 17th day of DI, indicating a potentially lower level of inhibitory control during simulated microgravity conditions. The amplitudes of the N1 and P3 peaks did not change significantly. The dry immersion procedure reproduces some of the important physiological factors of real space flights (support withdrawal, bodily liquid redistribution), thus our results hint at possible brain and behavioral alterations in real space flight that have so far been unnoticed.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 3","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Dietrich, Timmothy Krause, Vedha Nayagam, Tanvir Farouk, Frederick Dryer, Forman Williams
{"title":"Low Temperature n-Dodecane Droplet Combustion Experiments Aboard the International Space Station","authors":"Daniel Dietrich, Timmothy Krause, Vedha Nayagam, Tanvir Farouk, Frederick Dryer, Forman Williams","doi":"10.1007/s12217-024-10115-x","DOIUrl":"10.1007/s12217-024-10115-x","url":null,"abstract":"<div><p>This paper presents data from large, isolated n-dodecane droplets burning in microgravity on the International Space Station, along with preliminary comparisons with numerical and analytic predictions indicating general agreement in trends. The tests involved were primarily in air (a few in reduced oxygen) at ambient pressures ranging from 0.50 to 5.0 atm. After ignition, the droplets burn with a hot flame that extinguishes when the radiant energy loss causes the flame temperature to drop below the hot-flame-required value. The total flame radiative loss at extinction is nearly independent of pressure, while the peak flame diameter prior to hot-flame extinction decreases with increasing pressure. The maximum hot-flame temperature, inferred from fiber-support radiative emisssions, decreases with increasing pressure, and the hot flames become dimmer with increasing pressure. At 1.0 atm and below there is a prolonged period of coolflame burning that ends with cool-flame extinction at a finite droplet size; the cool-flame-extinction droplet diameter increases and the cool-flame burning rate decreases with decreasing ambient pressure. Above 1.25 atm warm-flame burning and hot-flame re-ignitions become prevalent. At 5.0 atm, there is no abrupt hot-flame extinction with transition to a cool flame; the flame gradually gets dimmer, and the flame temperature decreases over a much longer time, the transition between hot-flame and warm-flame burning becoming almost undiscernible.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 3","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140926910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongqiang Chen, Wanbo Liu, Yonghai Zhang, Jinjia Wei, Wangfang Du, Zhiqiang Zhu, Bin Li, Shuai Wang
{"title":"Hybrid Surfaces with Capillary Wick and Minichannels for Enhancement of Phase-Change Immersion Cooling of Power Electronics","authors":"Hongqiang Chen, Wanbo Liu, Yonghai Zhang, Jinjia Wei, Wangfang Du, Zhiqiang Zhu, Bin Li, Shuai Wang","doi":"10.1007/s12217-024-10117-9","DOIUrl":"10.1007/s12217-024-10117-9","url":null,"abstract":"<div><p>The pool boiling heat transfer (phase-change immersion cooling) phenomenon holds significant importance in the energy consumption management of large-power electronics. However, the optimization of surface structure for achieving stable and efficient heat transfer during boiling process remains a significant challenge. Herein, we propose a simplified and direct hybrid surface strategy that combines crossed mini channels and a capillary wick to address the cooling issues faced by high-performance power devices. The copper capillary wick is combined with the crossed mini channel to form a hybrid surface by a simple integrated sintering method. This study investigates the combined effects of different parameters of the capillary wick (average diameter size and powder addition) and minichannels (depth and width) on enhancing the nucleate boiling performance on these hybrid surfaces. The working fluid used in this investigation is HFE-7100. At <i>ΔT</i><sub>sub</sub> = 30 K, the CHF achieved by the hybrid surfaces combining capillary wicks and minichannels can reach 131 W/cm<sup>2</sup>, while the highest HTC is measured at 2.32 W/(cm<sup>2</sup>·K), both CHF and HTC achieve multiplicative enhancement compared to smooth surfaces. Furthermore, we have developed a CHF prediction model for the hybrid surfaces, which exhibits a prediction error of less than 15%.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 3","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140926911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Containerless Solidification of a Hollow Droplet with Forced Convection","authors":"Nang X. Ho, Binh D. Pham, Truong V. Vu","doi":"10.1007/s12217-024-10112-0","DOIUrl":"10.1007/s12217-024-10112-0","url":null,"abstract":"<div><p>The phenomenon of solidified suspended hollow droplets is often run into industry and nature. In this study, we focus on the containerless solidification process of a hollow droplet undergoing a forcing flow. We found that when the radius ratio (<i>R</i><sub><i>io</i></sub>) varied with different growth angles, it changes the trend of the solidification rate of the solidifying front over time. Specifically, with the growth angle of 5° (i.e., <i>Φ</i><sub><i>gr</i></sub> = 5°), the suspended hollow droplets finished solidification in almost the same time for <i>R</i><sub><i>io</i></sub> in the range of 0.2–0.7. When we increase the growth angle by 5°, i.e., <i>Φ</i><sub><i>gr</i></sub> = 10°, the solidification time increases with the increase of <i>R</i><sub><i>io</i></sub>. Also following the increase of <i>R</i><sub><i>io</i></sub>, this increase in the solidification time is even higher for the growth angle <i>Φ</i><sub><i>gr</i></sub> = 15°. The inlet temperature is also considered. Obviously, increasing the inlet temperature increases the solidification time of the hollow droplets. In addition, when the Reynolds number increases, the solidification time of the droplets also tends to increase. However, the increment of this trend is different under different temperatures of the forcing flow.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 3","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140926850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the Impact of Simulated Microgravity on Cellular DNA: A Comparative Analysis of Cancer and Normal Cell Lines","authors":"Saifaldeen Altaie, Amera Alrawi, Xuexin Duan, Qater Alnada","doi":"10.1007/s12217-024-10116-w","DOIUrl":"10.1007/s12217-024-10116-w","url":null,"abstract":"<div><p>The examination of the impact of microgravity on biological systems has gained considerable attention owing to its potential implications for health and disease. Simulated microgravity serves as a valuable methodology for elucidating the intricate cellular responses to altered gravitational conditions. This study investigates the effects of simulated microgravity on cellular DNA, employing four distinct cell lines—breast, brain, and esophageal cancer cells, in conjunction with normal cells for comparative analysis. The experiment utilized the comet assay test to quantitatively assess DNA damage. The results revealed a discernible disparity in the response to simulated microgravity, notably with cancer cells exhibiting a significant increase in DNA damage compared to the relatively minimal effects observed in both control and normal cells. Furthermore, within the cancer cell lines, significant variations in the extent of DNA damage were evident, implying a cell type-dependent response to simulated microgravity. These findings illuminate the potential differential susceptibility of cancerous and normal cells to microgravity-induced DNA damage. Consequently, this research substantially contributes to our comprehension of microgravity-induced cellular responses and unveils promising avenues for targeted interventions in cancer therapy.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 3","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140835317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}