Microgravity Science and Technology最新文献

筛选
英文 中文
Study on Surface Active Bubble Dynamics Properties under Strong Low-Frequency Sound Waves 强低频声波下的表面活性气泡动力学特性研究
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-04-27 DOI: 10.1007/s12217-024-10101-3
Yun Zhao, Ruiqi Huang, Yong Chen, Qi Feng
{"title":"Study on Surface Active Bubble Dynamics Properties under Strong Low-Frequency Sound Waves","authors":"Yun Zhao,&nbsp;Ruiqi Huang,&nbsp;Yong Chen,&nbsp;Qi Feng","doi":"10.1007/s12217-024-10101-3","DOIUrl":"10.1007/s12217-024-10101-3","url":null,"abstract":"<div><p>This paper delves into the dynamics of surface-active bubbles under low-frequency acoustic waves, with a focus on the stability effect and basic principle of rupture. The Rayleigh-Plesset equation is extended and modified based on real biological data, resulting in a model of surface-active bubbles with nonlinear surface tension. Using the Runge-Kutta method for numerical calculations, it is observed that larger acoustic wave amplitudes lead to larger bubble amplitudes. The acoustic wave frequency only affects the bubble vibration frequency in the low-frequency range, but at the resonance frequency, the bubble oscillations are violent. To further explain bubble rupture, the stress-strain relationship of the surface active layer of the bubble is studied, with the stress on the wall increasing sharply with the bubble radius. The stability of the non-spherical interface of the surface-active bubbles reveals a critical radius value, with bubbles in a stable state when the radius is smaller than this value. Through simulation, it is observed that bubbles vibrate in a steady state under stable conditions, but when the radius exceeds the critical value, a non-spherical interface appears ultimately resulting in inward depression and rupture.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 3","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140812014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Landing Style Influences Peak ‘Ground’ Reaction Forces during Repeated Jumping Using a Supine Jump Sled in Microgravity 在微重力条件下使用仰卧跳橇反复跳跃时,着地方式对 "地面 "反作用力峰值的影响
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-04-26 DOI: 10.1007/s12217-024-10114-y
Phil DB Price, John E Kennett, Jonathan PR Scott, David A Green, Daniel J Cleather
{"title":"Landing Style Influences Peak ‘Ground’ Reaction Forces during Repeated Jumping Using a Supine Jump Sled in Microgravity","authors":"Phil DB Price,&nbsp;John E Kennett,&nbsp;Jonathan PR Scott,&nbsp;David A Green,&nbsp;Daniel J Cleather","doi":"10.1007/s12217-024-10114-y","DOIUrl":"10.1007/s12217-024-10114-y","url":null,"abstract":"<div><p>Repeated jumping has been demonstrated as a feasible exercise countermeasure in microgravity and has been shown to reduce deconditioning in head down bed rest studies. However, varying landing stiffness may provide greater contribution of both axial and medio-lateral bone strain and muscle loading at greater muscle lengths, which may help minimize bone and muscle deconditioning. Therefore, this study investigated the effect of different landing styles on the force profile and ground contact time during repeated jumping using HIFIm in microgravity. Two participants performed repeated jumping on the HIFIm jump sled in microgravity during a parabolic flight campaign. ‘Ground’ forces and ground contact time were compared between landing styles where increased landing stiffness was instructed to the jumper, and increased spring resistance. The results show that the forces experienced when performing repeated jumps in microgravity are sensitive to the landing style employed. As greater stiffness was instructed, peak forces increased, and ground contact time decreased significantly. Peak forces and ground contact time also significantly increased when spring resistance increased. These results highlight that landing instructions and spring configurations could be used as training variables when developing an astronaut training program, which can use different jump styles to minimize bone and muscle deconditioning. Further research using bed rest analogs and repeated jumping using HIFIm is needed to demonstrate varied repeated jumping interventions as an effective exercise method for minimizing deconditioning in astronauts.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 3","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140804568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hypergravity Impact on Fertility of Apis mellifera carnica Queens – Case Study 超重力对蜂后繁殖力的影响 - 案例研究
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-04-24 DOI: 10.1007/s12217-024-10111-1
Dagmara Stasiowska, Michał Kolasa
{"title":"Hypergravity Impact on Fertility of Apis mellifera carnica Queens – Case Study","authors":"Dagmara Stasiowska,&nbsp;Michał Kolasa","doi":"10.1007/s12217-024-10111-1","DOIUrl":"10.1007/s12217-024-10111-1","url":null,"abstract":"<div><p>The launch is considered the most stressful rocket flight stage due to the hypergravity occurrences. The possibility of using honey bees (<i>Apis mellifera</i>) as the extraterrestrial pollinator depends on their ability to reproduce correctly after experiencing hypergravity. The described study aims to verify the impact of a launching rocket’s acceleration on honey bee queen’s egg-laying behavior. Four artificially inseminated <i>A. mellifera carnica</i> queens were placed in the Human Training Centrifuge and given to the acceleration pattern of the launching <i>Soyuz</i> rocket. Next, the data on the number of food stores, eggs, larvae, and worker and drone pupae were collected from the test and control hives using the modified <i>Liebefeld</i> method. The pilot study results imply that accelerated queen’s egg-laying behavior may change twofold: limiting or maximizing the number of laid eggs, with the control queen egg-laying rate remaining stable for all samples. The number of drone pupae is greater for the test sample colonies, with its earlier appearance in the hive. No impact on overwintering success was observed. Authors indicate limitations of the results and a need to continue the study to verify the occurrence of anomalies potentially related to the examined factor.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 3","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12217-024-10111-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140663190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Proposed Methodology for Assessment of Li-ion Cell Suitability and Safety for Suborbital Vehicle Applications 亚轨道飞行器应用中锂离子电池适用性和安全性的拟议评估方法
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-04-17 DOI: 10.1007/s12217-024-10110-2
Luciana Pereira Simões, Carlos Renato dos Santos, Alison Moraes
{"title":"A Proposed Methodology for Assessment of Li-ion Cell Suitability and Safety for Suborbital Vehicle Applications","authors":"Luciana Pereira Simões,&nbsp;Carlos Renato dos Santos,&nbsp;Alison Moraes","doi":"10.1007/s12217-024-10110-2","DOIUrl":"10.1007/s12217-024-10110-2","url":null,"abstract":"<div><p>Lithium-ion batteries are a feasible solution to store energy efficiently. However, in safety-critical environments such as the suborbital rockets, the introduced technologies do not may compromise safety. This research explores the possibility of replacing Ni-MH batteries with Li-ion batteries. However, before replacing technologies, the reliability of Li-ion cells needs to be evaluated, and the potential benefits must be considered against the risks to ensure the mission’s success. The main objective is to ensure the safety and integrity of suborbital missions during the technology transition. To assess the technology exchange, a method where the battery cell experiences a sequence of tests that cover aspects of safety encountered during the vehicle missions, such as vacuum, capacity, short circuit behavior, over-current discharge, behavior at higher environment temperature, and pulsed discharge behavior. To experience the proposed method, two Li-ion cells commercial off-the-shelf (COTS) from different manufacturers are evaluated. The results indicated that only one of the two cell models evaluated can substitute the Ni-MH. This research concludes that replacing Ni-MH cells with Li-ion cells is feasible, for such an application. The proposed acceptance flow design based on the test collectively validates the replacement, showing that the Li-ion cells can offer reliability, safety, and efficiency to suborbital vehicles to fulfill this mission profile.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 3","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140616832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autoclave Design for Microgravity Hydrothermal Synthesis 微重力水热合成高压釜设计
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-04-16 DOI: 10.1007/s12217-024-10109-9
Jessica J. Frick, Rachel Ormsby, Zhou Li, Yaprak Ozbakir, Chen Liu, Jasmine M. Cox, Carlo Carraro, Roya Maboudian, Debbie G. Senesky
{"title":"Autoclave Design for Microgravity Hydrothermal Synthesis","authors":"Jessica J. Frick,&nbsp;Rachel Ormsby,&nbsp;Zhou Li,&nbsp;Yaprak Ozbakir,&nbsp;Chen Liu,&nbsp;Jasmine M. Cox,&nbsp;Carlo Carraro,&nbsp;Roya Maboudian,&nbsp;Debbie G. Senesky","doi":"10.1007/s12217-024-10109-9","DOIUrl":"10.1007/s12217-024-10109-9","url":null,"abstract":"<div><p>Microgravity offers an enticing synthetic knob for materials scientists to explore—however, this environment creates major challenges in hardware development that can turn a simple 3-day experiment into a 3-year long nightmare. This paper provides an overview of engineering an autoclave, compatible with NASA’s Solidification Using a Baffle in Sealed Ampoules (SUBSA) furnace, to enable microgravity hydrothermal synthesis—an acceleration-sensitive technique that processes aqueous samples above the boiling point of water. Hydrothermal synthesis is a universal chemical transformation technique that is used to produce a range of advanced materials with applications in alternative energy, healthcare, and the food industry. In this work, we use the synthesis of graphene hydrogel as a case study to verify our hardware design on Earth before launching to the International Space Station for microgravity testing. The design addresses pertinent challenges which include enabling thermal expansion while preventing air bubble formation in solution and implementing a pressure fail-safe above the maximum operating temperature. Our goal in presenting this autoclave design is to provide a step forward towards commercial-of-the-shelf microgravity hardware.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 3","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12217-024-10109-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140601542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Dufour/Soret and Space-Dependent Internal Heat Source on Combined Convection of Non-Newtonian Fluids Flow Past a Vertical Full Cone in Porous Media: The VHF/VMF Case 杜富尔/索雷特和空间相关内部热源对多孔介质中流经垂直全锥体的非牛顿流体联合对流的影响:VHF/VMF 案例
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-04-13 DOI: 10.1007/s12217-024-10100-4
Kuo-Ann Yih, Heng-Pin Hsu
{"title":"Influence of Dufour/Soret and Space-Dependent Internal Heat Source on Combined Convection of Non-Newtonian Fluids Flow Past a Vertical Full Cone in Porous Media: The VHF/VMF Case","authors":"Kuo-Ann Yih,&nbsp;Heng-Pin Hsu","doi":"10.1007/s12217-024-10100-4","DOIUrl":"10.1007/s12217-024-10100-4","url":null,"abstract":"<div><p>This paper numerically analyzes the influence of Dufour/Soret and space-dependent internal heat source (exponential decaying form) on combined convection (entire regime) of non-Newtonian fluids (power-law model of Ostwald-de-Waele) flow past a vertical full cone in porous media with the boundary conditions of VHF/VMF case. The transformed governing equations (non-similar equations) are solved by Keller box method (KBM). Numerical data for the dimensionless temperature profile, the dimensionless concentration profile, the local Nusselt number and the local Sherwood number are graphically and tabularly presented for the nine parameters: the buoyancy ratio <span>(N)</span>, the Lewis number <span>(Le)</span>, the Dufour parameter <span>(Df)</span>, the Soret parameter <span>(Sr)</span>, the cone angle parameter <span>(m)</span>, the mixed convection parameter <span>(xi)</span>, the VHF/VMF exponent <span>(lambda)</span>, the non-Newtonian fluid power-law index <span>(n)</span>, the space-dependent internal heat source coefficient <span>({A}^{*})</span>. The increase of the buoyancy ratio <span>(N)</span> and the VHF/VMF exponent <span>(lambda)</span> tends to increase both the local Nusselt number and the local Sherwood number. The Nusselt number enhances with increasing the Soret parameter <span>(Sr)</span>. Increasing the Lewis number <span>(Le)</span>, the Dufour parameter <span>(Df)</span>, the space-dependent internal heat source coefficient <span>({A}^{*})</span> enhances the Sherwood number. When the power-law index <span>(n)</span> is decreased, the local Nusselt and Sherwood numbers are increased. The physical aspects of the problem are discussed in details.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 2","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140601705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNS of Nonlinear Electrophoresis 非线性电泳的 DNS
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-04-12 DOI: 10.1007/s12217-024-10108-w
Elizaveta Frants, Sakir Amiroudine, Evgeny Demekhin
{"title":"DNS of Nonlinear Electrophoresis","authors":"Elizaveta Frants,&nbsp;Sakir Amiroudine,&nbsp;Evgeny Demekhin","doi":"10.1007/s12217-024-10108-w","DOIUrl":"10.1007/s12217-024-10108-w","url":null,"abstract":"<div><p>A numerical modelling of electrophoresis of dielectric particle is proposed under low and moderate homogeneous electric fields. As surface charge at the surface of the particle increases, nonlinear effects associated with surface conduction become more prominent. Current analytical methodologies addressing this issue employ asymptotic techniques, necessitating the establishment of effective boundary conditions. Consequently, solutions within the thin boundary layer, which substantially contribute to the emergence of nonlinear phenomena, are overlooked. While the asymptotic approach is capable of capturing principal effects, it falls short in providing a comprehensive understanding of the complete picture with non-linear effects. Our numerical modelling, incorporating a full formulation, is designed to bridge this knowledge gap. The numerical algorithm is tested in this work for the case of dielectric particle and can be readily extended to other particle types by altering the boundary conditions. The proposed method can be effortlessly generalized for various particle categories, such as ion-selective, flexible, biological, Janus particles, and those with hydrophobic surfaces. It operates without constraints concerning Debye, Dukhin, and Péclet numbers, which are associated with the emergence of nonlinear effects. The numerical algorithm was validated using an analytical solution for a weak electric field and experimental results for moderate and high electric fields. It was found that the electric field intensity and the surface charge density on the particle have the most significant impact on the emergence of non-linear effects. When there is a high degree of non-linearity, a structure of thin boundary layers nested within one another forms around the particle’s surface. In particular, the formation of a space charge region (SCR) around a non-conducting surface was discovered. It was previously believed that SCR only forms around surfaces with ion-exchange properties.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 2","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140601585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Confinement on Opposed-Flow Flame Spread over Cellulose and Polymeric Solids in Microgravity 封闭对微重力条件下纤维素和聚合物固体上对置流火焰蔓延的影响
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-04-01 DOI: 10.1007/s12217-024-10106-y
Ankit Sharma, Yanjun Li, Ya-Ting T. Liao, Paul V. Ferkul, Michael C. Johnston, Charles Bunnell
{"title":"Effects of Confinement on Opposed-Flow Flame Spread over Cellulose and Polymeric Solids in Microgravity","authors":"Ankit Sharma,&nbsp;Yanjun Li,&nbsp;Ya-Ting T. Liao,&nbsp;Paul V. Ferkul,&nbsp;Michael C. Johnston,&nbsp;Charles Bunnell","doi":"10.1007/s12217-024-10106-y","DOIUrl":"10.1007/s12217-024-10106-y","url":null,"abstract":"<div><p>Opposed-flow flame spread over solid materials has been investigated in the past few decades owing to its importance in fundamental understanding of fires. These studies provided insights on the behavior of opposed-flow flames in different environmental conditions (e.g., flow speed, oxygen concentration). However, the effect of confinement on opposed-flow flames remains under-explored. It is known that confinement plays a critical role in concurrent-flow flame spread in normal and microgravity conditions. Hence, for a complete understanding it becomes important to understand the effects of confinement for opposed-flow flames. In this study, microgravity experiments are conducted aboard the International Space Station (ISS) to investigate opposed-flow flame spread in different confined conditions. Two materials, cotton-fiberglass blended textile fabric (SIBAL) and 1 mm thick polymethyl methacrylate (PMMA) slab are burned between a pair of parallel flow baffles in a small flow duct. By varying the sample-baffle distance, various levels of confinement are achieved (H = 1–2 cm). Three types of baffles, transparent, black, and reflective, are used to create different radiative boundary conditions. The purely forced flow speed is also varied (between 2.6 and 10.5 cm/s) to investigate its interplay with the confinement level. For both sample materials, it is observed that the flame spread rate decreases when the confinement level increases (i.e., when H decreases). In addition, flame spread rate is shown to have a positive correlation with flow speed, up to an optimal value. The results also indicate that the optimal flow speed for flame spread can decrease in highly confined conditions. Surface radiation on the confinement boundary is shown to play a key role. For SIBAL fabric, stronger flames are observed when using black baffles compared to transparent. For PMMA, reflective baffles yield stronger flames compared to black baffles. When comparing the results to the concurrent-flow case, it is also noticed that opposed-flow flames spread slower and blow off at larger flow speeds but are not as sensitive to the flow speed. This work provides unique long-duration microgravity experimental data that can inform the design of future opposed-flow experiments in microgravity and the development of theory and numerical models.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 2","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12217-024-10106-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140601586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human Postural Responses to Artificial Gravity Training 人类对人工重力训练的姿势反应
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-03-23 DOI: 10.1007/s12217-024-10107-x
Alina Saveko, Milena Koloteva, Elena Tomilovskaya
{"title":"Human Postural Responses to Artificial Gravity Training","authors":"Alina Saveko,&nbsp;Milena Koloteva,&nbsp;Elena Tomilovskaya","doi":"10.1007/s12217-024-10107-x","DOIUrl":"10.1007/s12217-024-10107-x","url":null,"abstract":"<div><p>Short-radius centrifugation (SRC) is a promising and economically feasible countermeasure in space flight and applies to gravity therapy in terrestrial medicine. The potential occurrence of undesirable orthostatic and vestibular reactions limits the use of this method. One way to minimize these risks is the ability of a human to adapt to the effects of overload. It is known that artificial gravity training may improve orthostatic tolerance. New data demonstrated that cardio-postural interactions and muscle-pump baroreflex activation are present during short-arm centrifugation. Based on previous studies, we hypothesized that repeated SRC in the interval training mode with angular velocities from 22 to 28 rpm may also improve postural tolerance. Six healthy male volunteers were observed before and immediately after five consecutive SRC sessions. The rest between SRC was at least three days. The SRC mode was an interval and included five 300-second platforms with 1.27 g at the feet and four 300-second platforms with 2.06 g at the feet. We registered the main postural characteristics and ground reaction forces data when the participant kept the center of pressure at a given point in a standing position with biofeedback and without this. After the first SRC session, there was a significant posture decondition. The SRC training effect was already noticeable after the second SRC session and was stable until the end of the experiment. The results demonstrate the development of postural tolerance to artificial gravity exposure in this mode and expand the understanding of sensorimotor adaptation capabilities.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 2","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140197439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solidification Furnace Developed for Sounding Rockets: Santa Branca Mission 为探空火箭开发的凝固炉:圣布兰卡任务
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-03-20 DOI: 10.1007/s12217-024-10104-0
Rafael Cardoso Toledo, Plínio Ivo Gama Tenório, Marcelo Sampaio, José Pelogia da Silva, Irajá Newton Bandeira, Chen Ying An
{"title":"Solidification Furnace Developed for Sounding Rockets: Santa Branca Mission","authors":"Rafael Cardoso Toledo,&nbsp;Plínio Ivo Gama Tenório,&nbsp;Marcelo Sampaio,&nbsp;José Pelogia da Silva,&nbsp;Irajá Newton Bandeira,&nbsp;Chen Ying An","doi":"10.1007/s12217-024-10104-0","DOIUrl":"10.1007/s12217-024-10104-0","url":null,"abstract":"<div><p>Brazil has a Microgravity Program mainly based mainly on sounding rockets experiments. The Santa Branca Mission, aimed to qualify the Brazilian Suborbital Microgravity Platform (MQ-MSP). The group of the Coordination of Applied Research and Technological Development (COPDT) of the Brazilian Space Research Institute (INPE) participated with an experiment in a fast solidification furnace, capable of producing temperatures up to 900 °C, which was tested with semiconductor and metal alloys. This paper describes the construction and performance of this furnace during the last suborbital flight, the Santa Branca Mission, which took place in 2022. The solidification furnace is now qualified and ready to be used by other institutions for sounding rocket flights.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 2","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140197433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信