Shuyang Chen, Shangtong Chen, Di Wu, Li Duan, Xiaozhong Liu, Xilin Zhao, Pu Zha, Chao Yang, Liang Hu, Jia Wang, Yifan Zhao, Yongli Yin, Qi Kang
{"title":"中国空间站储罐模型充气过程中的液体爬升行为研究","authors":"Shuyang Chen, Shangtong Chen, Di Wu, Li Duan, Xiaozhong Liu, Xilin Zhao, Pu Zha, Chao Yang, Liang Hu, Jia Wang, Yifan Zhao, Yongli Yin, Qi Kang","doi":"10.1007/s12217-024-10123-x","DOIUrl":null,"url":null,"abstract":"<div><p>Propellant tanks provide non-entrained propellant for thrusters of satellites, which plays an important role in space mission. And the fluid transfer efficiency of tanks is the key to supply non-entrained propellant. An experiment cabin containing two different scaled tank models are designed and experiments of liquid reorientation under microgravity are carried out in the Chinese Space Station. Experiment results present the high liquid transportation efficiency of the two kinds of propellant management devices. Finite element models of the two tank models are established and verified by simulation matching with experiments. Furthermore, methylhydrazine is adopted to carry out more simulation analysis by considering different liquid contact angles and surface tension, and numerical results show smaller liquid contact angle and bigger surface tension can increase liquid flow speed. This research can provide theory and data support for the design of plate type tanks.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Liquid Climbing Behavior During Filling Process in Tank Models Aboard the Chinese Space Station\",\"authors\":\"Shuyang Chen, Shangtong Chen, Di Wu, Li Duan, Xiaozhong Liu, Xilin Zhao, Pu Zha, Chao Yang, Liang Hu, Jia Wang, Yifan Zhao, Yongli Yin, Qi Kang\",\"doi\":\"10.1007/s12217-024-10123-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Propellant tanks provide non-entrained propellant for thrusters of satellites, which plays an important role in space mission. And the fluid transfer efficiency of tanks is the key to supply non-entrained propellant. An experiment cabin containing two different scaled tank models are designed and experiments of liquid reorientation under microgravity are carried out in the Chinese Space Station. Experiment results present the high liquid transportation efficiency of the two kinds of propellant management devices. Finite element models of the two tank models are established and verified by simulation matching with experiments. Furthermore, methylhydrazine is adopted to carry out more simulation analysis by considering different liquid contact angles and surface tension, and numerical results show smaller liquid contact angle and bigger surface tension can increase liquid flow speed. This research can provide theory and data support for the design of plate type tanks.</p></div>\",\"PeriodicalId\":707,\"journal\":{\"name\":\"Microgravity Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microgravity Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-024-10123-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10123-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Study on Liquid Climbing Behavior During Filling Process in Tank Models Aboard the Chinese Space Station
Propellant tanks provide non-entrained propellant for thrusters of satellites, which plays an important role in space mission. And the fluid transfer efficiency of tanks is the key to supply non-entrained propellant. An experiment cabin containing two different scaled tank models are designed and experiments of liquid reorientation under microgravity are carried out in the Chinese Space Station. Experiment results present the high liquid transportation efficiency of the two kinds of propellant management devices. Finite element models of the two tank models are established and verified by simulation matching with experiments. Furthermore, methylhydrazine is adopted to carry out more simulation analysis by considering different liquid contact angles and surface tension, and numerical results show smaller liquid contact angle and bigger surface tension can increase liquid flow speed. This research can provide theory and data support for the design of plate type tanks.
期刊介绍:
Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity.
Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges).
Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are:
− materials science
− fluid mechanics
− process engineering
− physics
− chemistry
− heat and mass transfer
− gravitational biology
− radiation biology
− exobiology and astrobiology
− human physiology