Exploring the Impact of Simulated Microgravity on Cellular DNA: A Comparative Analysis of Cancer and Normal Cell Lines

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Saifaldeen Altaie, Amera Alrawi, Xuexin Duan, Qater Alnada
{"title":"Exploring the Impact of Simulated Microgravity on Cellular DNA: A Comparative Analysis of Cancer and Normal Cell Lines","authors":"Saifaldeen Altaie,&nbsp;Amera Alrawi,&nbsp;Xuexin Duan,&nbsp;Qater Alnada","doi":"10.1007/s12217-024-10116-w","DOIUrl":null,"url":null,"abstract":"<div><p>The examination of the impact of microgravity on biological systems has gained considerable attention owing to its potential implications for health and disease. Simulated microgravity serves as a valuable methodology for elucidating the intricate cellular responses to altered gravitational conditions. This study investigates the effects of simulated microgravity on cellular DNA, employing four distinct cell lines—breast, brain, and esophageal cancer cells, in conjunction with normal cells for comparative analysis. The experiment utilized the comet assay test to quantitatively assess DNA damage. The results revealed a discernible disparity in the response to simulated microgravity, notably with cancer cells exhibiting a significant increase in DNA damage compared to the relatively minimal effects observed in both control and normal cells. Furthermore, within the cancer cell lines, significant variations in the extent of DNA damage were evident, implying a cell type-dependent response to simulated microgravity. These findings illuminate the potential differential susceptibility of cancerous and normal cells to microgravity-induced DNA damage. Consequently, this research substantially contributes to our comprehension of microgravity-induced cellular responses and unveils promising avenues for targeted interventions in cancer therapy.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10116-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The examination of the impact of microgravity on biological systems has gained considerable attention owing to its potential implications for health and disease. Simulated microgravity serves as a valuable methodology for elucidating the intricate cellular responses to altered gravitational conditions. This study investigates the effects of simulated microgravity on cellular DNA, employing four distinct cell lines—breast, brain, and esophageal cancer cells, in conjunction with normal cells for comparative analysis. The experiment utilized the comet assay test to quantitatively assess DNA damage. The results revealed a discernible disparity in the response to simulated microgravity, notably with cancer cells exhibiting a significant increase in DNA damage compared to the relatively minimal effects observed in both control and normal cells. Furthermore, within the cancer cell lines, significant variations in the extent of DNA damage were evident, implying a cell type-dependent response to simulated microgravity. These findings illuminate the potential differential susceptibility of cancerous and normal cells to microgravity-induced DNA damage. Consequently, this research substantially contributes to our comprehension of microgravity-induced cellular responses and unveils promising avenues for targeted interventions in cancer therapy.

Abstract Image

探索模拟微重力对细胞 DNA 的影响:癌症细胞系与正常细胞系的比较分析
由于微重力对健康和疾病的潜在影响,研究微重力对生物系统的影响已经获得了相当多的关注。模拟微重力是阐明细胞对改变的重力条件的复杂反应的重要方法。本研究采用四种不同的细胞系--乳腺癌、脑癌和食管癌细胞,以及正常细胞进行比较分析,研究模拟微重力对细胞DNA的影响。实验利用彗星试验来定量评估DNA损伤。结果显示,癌细胞对模拟微重力的反应存在明显差异,特别是与对照细胞和正常细胞中观察到的相对最小的影响相比,癌细胞的DNA损伤显著增加。此外,在癌细胞系中,DNA损伤程度明显不同,这意味着细胞类型对模拟微重力的反应具有依赖性。这些发现揭示了癌细胞和正常细胞对微重力诱导的DNA损伤的潜在易感性差异。因此,这项研究大大有助于我们理解微重力诱导的细胞反应,并为癌症治疗的靶向干预开辟了前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microgravity Science and Technology
Microgravity Science and Technology 工程技术-工程:宇航
CiteScore
3.50
自引率
44.40%
发文量
96
期刊介绍: Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity. Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges). Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are: − materials science − fluid mechanics − process engineering − physics − chemistry − heat and mass transfer − gravitational biology − radiation biology − exobiology and astrobiology − human physiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信