Jessica J. Frick, Rachel Ormsby, Zhou Li, Yaprak Ozbakir, Chen Liu, Jasmine M. Cox, Carlo Carraro, Roya Maboudian, Debbie G. Senesky
{"title":"微重力水热合成高压釜设计","authors":"Jessica J. Frick, Rachel Ormsby, Zhou Li, Yaprak Ozbakir, Chen Liu, Jasmine M. Cox, Carlo Carraro, Roya Maboudian, Debbie G. Senesky","doi":"10.1007/s12217-024-10109-9","DOIUrl":null,"url":null,"abstract":"<div><p>Microgravity offers an enticing synthetic knob for materials scientists to explore—however, this environment creates major challenges in hardware development that can turn a simple 3-day experiment into a 3-year long nightmare. This paper provides an overview of engineering an autoclave, compatible with NASA’s Solidification Using a Baffle in Sealed Ampoules (SUBSA) furnace, to enable microgravity hydrothermal synthesis—an acceleration-sensitive technique that processes aqueous samples above the boiling point of water. Hydrothermal synthesis is a universal chemical transformation technique that is used to produce a range of advanced materials with applications in alternative energy, healthcare, and the food industry. In this work, we use the synthesis of graphene hydrogel as a case study to verify our hardware design on Earth before launching to the International Space Station for microgravity testing. The design addresses pertinent challenges which include enabling thermal expansion while preventing air bubble formation in solution and implementing a pressure fail-safe above the maximum operating temperature. Our goal in presenting this autoclave design is to provide a step forward towards commercial-of-the-shelf microgravity hardware.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12217-024-10109-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Autoclave Design for Microgravity Hydrothermal Synthesis\",\"authors\":\"Jessica J. Frick, Rachel Ormsby, Zhou Li, Yaprak Ozbakir, Chen Liu, Jasmine M. Cox, Carlo Carraro, Roya Maboudian, Debbie G. Senesky\",\"doi\":\"10.1007/s12217-024-10109-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microgravity offers an enticing synthetic knob for materials scientists to explore—however, this environment creates major challenges in hardware development that can turn a simple 3-day experiment into a 3-year long nightmare. This paper provides an overview of engineering an autoclave, compatible with NASA’s Solidification Using a Baffle in Sealed Ampoules (SUBSA) furnace, to enable microgravity hydrothermal synthesis—an acceleration-sensitive technique that processes aqueous samples above the boiling point of water. Hydrothermal synthesis is a universal chemical transformation technique that is used to produce a range of advanced materials with applications in alternative energy, healthcare, and the food industry. In this work, we use the synthesis of graphene hydrogel as a case study to verify our hardware design on Earth before launching to the International Space Station for microgravity testing. The design addresses pertinent challenges which include enabling thermal expansion while preventing air bubble formation in solution and implementing a pressure fail-safe above the maximum operating temperature. Our goal in presenting this autoclave design is to provide a step forward towards commercial-of-the-shelf microgravity hardware.</p></div>\",\"PeriodicalId\":707,\"journal\":{\"name\":\"Microgravity Science and Technology\",\"volume\":\"36 3\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12217-024-10109-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microgravity Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-024-10109-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10109-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
摘要
微重力为材料科学家提供了一个极具诱惑力的合成平台--然而,这种环境给硬件开发带来了巨大挑战,可能会将一个简单的 3 天实验变成一个长达 3 年的噩梦。本文概述了与 NASA 的 "利用密封安瓿中的挡板进行凝固"(SUBSA)炉兼容的高压釜工程,以实现微重力水热合成--一种对加速度敏感的技术,用于处理高于水沸点的水性样品。水热合成是一种通用的化学转化技术,可用于生产一系列先进材料,应用于替代能源、医疗保健和食品工业。在这项工作中,我们将石墨烯水凝胶的合成作为一个案例研究,在发射到国际空间站进行微重力测试之前,在地球上验证我们的硬件设计。该设计解决了相关挑战,包括在防止溶液中形成气泡的同时实现热膨胀,以及在最高工作温度之上实施压力故障安全保护。我们提出这一高压釜设计的目的是向商用微重力硬件迈出一步。
Autoclave Design for Microgravity Hydrothermal Synthesis
Microgravity offers an enticing synthetic knob for materials scientists to explore—however, this environment creates major challenges in hardware development that can turn a simple 3-day experiment into a 3-year long nightmare. This paper provides an overview of engineering an autoclave, compatible with NASA’s Solidification Using a Baffle in Sealed Ampoules (SUBSA) furnace, to enable microgravity hydrothermal synthesis—an acceleration-sensitive technique that processes aqueous samples above the boiling point of water. Hydrothermal synthesis is a universal chemical transformation technique that is used to produce a range of advanced materials with applications in alternative energy, healthcare, and the food industry. In this work, we use the synthesis of graphene hydrogel as a case study to verify our hardware design on Earth before launching to the International Space Station for microgravity testing. The design addresses pertinent challenges which include enabling thermal expansion while preventing air bubble formation in solution and implementing a pressure fail-safe above the maximum operating temperature. Our goal in presenting this autoclave design is to provide a step forward towards commercial-of-the-shelf microgravity hardware.
期刊介绍:
Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity.
Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges).
Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are:
− materials science
− fluid mechanics
− process engineering
− physics
− chemistry
− heat and mass transfer
− gravitational biology
− radiation biology
− exobiology and astrobiology
− human physiology