人类对人工重力训练的姿势反应

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Alina Saveko, Milena Koloteva, Elena Tomilovskaya
{"title":"人类对人工重力训练的姿势反应","authors":"Alina Saveko,&nbsp;Milena Koloteva,&nbsp;Elena Tomilovskaya","doi":"10.1007/s12217-024-10107-x","DOIUrl":null,"url":null,"abstract":"<div><p>Short-radius centrifugation (SRC) is a promising and economically feasible countermeasure in space flight and applies to gravity therapy in terrestrial medicine. The potential occurrence of undesirable orthostatic and vestibular reactions limits the use of this method. One way to minimize these risks is the ability of a human to adapt to the effects of overload. It is known that artificial gravity training may improve orthostatic tolerance. New data demonstrated that cardio-postural interactions and muscle-pump baroreflex activation are present during short-arm centrifugation. Based on previous studies, we hypothesized that repeated SRC in the interval training mode with angular velocities from 22 to 28 rpm may also improve postural tolerance. Six healthy male volunteers were observed before and immediately after five consecutive SRC sessions. The rest between SRC was at least three days. The SRC mode was an interval and included five 300-second platforms with 1.27 g at the feet and four 300-second platforms with 2.06 g at the feet. We registered the main postural characteristics and ground reaction forces data when the participant kept the center of pressure at a given point in a standing position with biofeedback and without this. After the first SRC session, there was a significant posture decondition. The SRC training effect was already noticeable after the second SRC session and was stable until the end of the experiment. The results demonstrate the development of postural tolerance to artificial gravity exposure in this mode and expand the understanding of sensorimotor adaptation capabilities.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human Postural Responses to Artificial Gravity Training\",\"authors\":\"Alina Saveko,&nbsp;Milena Koloteva,&nbsp;Elena Tomilovskaya\",\"doi\":\"10.1007/s12217-024-10107-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Short-radius centrifugation (SRC) is a promising and economically feasible countermeasure in space flight and applies to gravity therapy in terrestrial medicine. The potential occurrence of undesirable orthostatic and vestibular reactions limits the use of this method. One way to minimize these risks is the ability of a human to adapt to the effects of overload. It is known that artificial gravity training may improve orthostatic tolerance. New data demonstrated that cardio-postural interactions and muscle-pump baroreflex activation are present during short-arm centrifugation. Based on previous studies, we hypothesized that repeated SRC in the interval training mode with angular velocities from 22 to 28 rpm may also improve postural tolerance. Six healthy male volunteers were observed before and immediately after five consecutive SRC sessions. The rest between SRC was at least three days. The SRC mode was an interval and included five 300-second platforms with 1.27 g at the feet and four 300-second platforms with 2.06 g at the feet. We registered the main postural characteristics and ground reaction forces data when the participant kept the center of pressure at a given point in a standing position with biofeedback and without this. After the first SRC session, there was a significant posture decondition. The SRC training effect was already noticeable after the second SRC session and was stable until the end of the experiment. The results demonstrate the development of postural tolerance to artificial gravity exposure in this mode and expand the understanding of sensorimotor adaptation capabilities.</p></div>\",\"PeriodicalId\":707,\"journal\":{\"name\":\"Microgravity Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microgravity Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-024-10107-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10107-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

短半径离心法(SRC)是太空飞行中一种前景广阔且经济可行的对策,也适用于地面医学中的重力疗法。可能出现的不良正心和前庭反应限制了这种方法的使用。将这些风险降至最低的方法之一是人类适应超负荷效应的能力。众所周知,人工重力训练可以改善正静态耐受性。新的数据表明,在短臂离心过程中存在心-体位相互作用和肌肉-泵压反射激活。基于之前的研究,我们假设在角速度为 22 至 28 rpm 的间歇训练模式下重复进行 SRC 也可以改善体位耐受性。我们对六名健康男性志愿者进行了连续五次 SRC 训练前后的观察。两次 SRC 之间至少休息三天。SRC 模式为间歇式,包括 5 个 300 秒平台,脚部重 1.27 克,以及 4 个 300 秒平台,脚部重 2.06 克。在有生物反馈和没有生物反馈的情况下,我们记录了受试者在站立姿势下将压力中心保持在给定点时的主要姿势特征和地面反作用力数据。在第一节 SRC 训练课后,学员的姿势有了明显的改善。第二节 SRC 训练课后,SRC 训练效果已经非常明显,并且在实验结束前一直保持稳定。这些结果表明,在这种模式下,人工重力暴露的姿势耐受性得到了发展,并拓展了对传感器运动适应能力的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Human Postural Responses to Artificial Gravity Training

Human Postural Responses to Artificial Gravity Training

Human Postural Responses to Artificial Gravity Training

Short-radius centrifugation (SRC) is a promising and economically feasible countermeasure in space flight and applies to gravity therapy in terrestrial medicine. The potential occurrence of undesirable orthostatic and vestibular reactions limits the use of this method. One way to minimize these risks is the ability of a human to adapt to the effects of overload. It is known that artificial gravity training may improve orthostatic tolerance. New data demonstrated that cardio-postural interactions and muscle-pump baroreflex activation are present during short-arm centrifugation. Based on previous studies, we hypothesized that repeated SRC in the interval training mode with angular velocities from 22 to 28 rpm may also improve postural tolerance. Six healthy male volunteers were observed before and immediately after five consecutive SRC sessions. The rest between SRC was at least three days. The SRC mode was an interval and included five 300-second platforms with 1.27 g at the feet and four 300-second platforms with 2.06 g at the feet. We registered the main postural characteristics and ground reaction forces data when the participant kept the center of pressure at a given point in a standing position with biofeedback and without this. After the first SRC session, there was a significant posture decondition. The SRC training effect was already noticeable after the second SRC session and was stable until the end of the experiment. The results demonstrate the development of postural tolerance to artificial gravity exposure in this mode and expand the understanding of sensorimotor adaptation capabilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microgravity Science and Technology
Microgravity Science and Technology 工程技术-工程:宇航
CiteScore
3.50
自引率
44.40%
发文量
96
期刊介绍: Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity. Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges). Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are: − materials science − fluid mechanics − process engineering − physics − chemistry − heat and mass transfer − gravitational biology − radiation biology − exobiology and astrobiology − human physiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信