Numerical and Experimental Investigation of Heat Transfer in the Porous Media of an Additively Manufactured Evaporator of a Two-Phase Mechanically Pumped Loop for Space Applications
Luca Valdarno, Vijay K. Dhir, Benjamin Furst, Eric Sunada
{"title":"Numerical and Experimental Investigation of Heat Transfer in the Porous Media of an Additively Manufactured Evaporator of a Two-Phase Mechanically Pumped Loop for Space Applications","authors":"Luca Valdarno, Vijay K. Dhir, Benjamin Furst, Eric Sunada","doi":"10.1007/s12217-024-10122-y","DOIUrl":null,"url":null,"abstract":"<div><p>Two-phase pumped cooling systems are applied when it is required to maintain a very stable temperature for heat dissipation in a system. A novel additively manufactured evaporator for two-phase thermal control was developed at NASA Jet Propulsion Laboratory (JPL). The Two-Phase Mechanically Pumped Loop (2PMPL) allows to manage the heat transfer with much wider breadth of control authority compared to capillary-based systems, while alleviating the system's sensitivity to pressure drops. The focus of this work is the understanding and capturing the micro-scale evaporation occurring in the porous structure of the evaporator. The Boiling and Phase Change Heat Transfer Laboratory at the University of California, Los Angeles (UCLA) developed an all-encompassing numerical simulation tool to predict the operational thermal behavior of the evaporator considering the effect of the liquid-vapor interface at the wick-to-vapor boundary. The numerical model incorporated the behaviour of the liquid-vapor meniscus at particle level located along the evaporative boundary between the wick structure and the vapor chamber. The numerical model allowed to study the effect of different parameters, such as boundary conditions, geometry, wick and fluid properties. An experimental setup was built at UCLA in order to characterize the heat transfer within an additively manufactured porous sample fabricated at JPL and in particular its evaporative heat load under certain heat inputs. The experimental efforts served as validation for the numerical results and aided in the characterization of the transient phenomena, such as dry-out.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12217-024-10122-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10122-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Two-phase pumped cooling systems are applied when it is required to maintain a very stable temperature for heat dissipation in a system. A novel additively manufactured evaporator for two-phase thermal control was developed at NASA Jet Propulsion Laboratory (JPL). The Two-Phase Mechanically Pumped Loop (2PMPL) allows to manage the heat transfer with much wider breadth of control authority compared to capillary-based systems, while alleviating the system's sensitivity to pressure drops. The focus of this work is the understanding and capturing the micro-scale evaporation occurring in the porous structure of the evaporator. The Boiling and Phase Change Heat Transfer Laboratory at the University of California, Los Angeles (UCLA) developed an all-encompassing numerical simulation tool to predict the operational thermal behavior of the evaporator considering the effect of the liquid-vapor interface at the wick-to-vapor boundary. The numerical model incorporated the behaviour of the liquid-vapor meniscus at particle level located along the evaporative boundary between the wick structure and the vapor chamber. The numerical model allowed to study the effect of different parameters, such as boundary conditions, geometry, wick and fluid properties. An experimental setup was built at UCLA in order to characterize the heat transfer within an additively manufactured porous sample fabricated at JPL and in particular its evaporative heat load under certain heat inputs. The experimental efforts served as validation for the numerical results and aided in the characterization of the transient phenomena, such as dry-out.
期刊介绍:
Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity.
Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges).
Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are:
− materials science
− fluid mechanics
− process engineering
− physics
− chemistry
− heat and mass transfer
− gravitational biology
− radiation biology
− exobiology and astrobiology
− human physiology