使用无干扰有效载荷进行复合编队飞行的实验研究

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zijun Xiong, Qing Li, Hongjie Yang, Lei Liu
{"title":"使用无干扰有效载荷进行复合编队飞行的实验研究","authors":"Zijun Xiong,&nbsp;Qing Li,&nbsp;Hongjie Yang,&nbsp;Lei Liu","doi":"10.1007/s12217-024-10119-7","DOIUrl":null,"url":null,"abstract":"<div><p>Precise formation control is increasingly demanded in high-resolution remote sensing formations, gravitational detection interferometers and distributed space telescopes. One composite formation flying method using disturbance-free payloads was previously proposed to enhance formation accuracy and payload stability. This method divided satellite formation into coarse formation using conventional satellite buses and fine formation using precise payloads. To verify the effectiveness of the proposed formation method and the payload stability performance, this paper develops an experimental system using two air-floating satellite prototypes. First, the experimental design is proposed and the experimental system model is established. Second, the experimental prototype development and system architecture are described in detail. Finally, the composite formation flying effectiveness is further demonstrated by coarse and fine formation control experiments. The experiment results indicate that the composite formation flying method effectively improves the formation accuracy for distributed payloads and isolates microvibrations from satellite buses to enhance payload stability.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigation of Composite Formation Flying Using Disturbance-Free Payloads\",\"authors\":\"Zijun Xiong,&nbsp;Qing Li,&nbsp;Hongjie Yang,&nbsp;Lei Liu\",\"doi\":\"10.1007/s12217-024-10119-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Precise formation control is increasingly demanded in high-resolution remote sensing formations, gravitational detection interferometers and distributed space telescopes. One composite formation flying method using disturbance-free payloads was previously proposed to enhance formation accuracy and payload stability. This method divided satellite formation into coarse formation using conventional satellite buses and fine formation using precise payloads. To verify the effectiveness of the proposed formation method and the payload stability performance, this paper develops an experimental system using two air-floating satellite prototypes. First, the experimental design is proposed and the experimental system model is established. Second, the experimental prototype development and system architecture are described in detail. Finally, the composite formation flying effectiveness is further demonstrated by coarse and fine formation control experiments. The experiment results indicate that the composite formation flying method effectively improves the formation accuracy for distributed payloads and isolates microvibrations from satellite buses to enhance payload stability.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-024-10119-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10119-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高分辨率遥感编队、引力探测干涉仪和分布式空间望远镜对精确编队控制的要求越来越高。以前曾提出过一种使用无干扰有效载荷的复合编队飞行方法,以提高编队精度和有效载荷的稳定性。该方法将卫星编队分为使用常规卫星总线的粗编队和使用精确有效载荷的细编队。为了验证所提编队方法的有效性和有效载荷的稳定性能,本文利用两个气浮卫星原型机开发了一个实验系统。首先,提出了实验设计并建立了实验系统模型。其次,详细介绍了实验原型的开发和系统结构。最后,通过粗编队和细编队控制实验进一步证明了复合编队飞行的有效性。实验结果表明,复合编队飞行方法有效提高了分布式有效载荷的编队精度,并隔离了卫星总线的微振动,增强了有效载荷的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Experimental Investigation of Composite Formation Flying Using Disturbance-Free Payloads

Experimental Investigation of Composite Formation Flying Using Disturbance-Free Payloads

Experimental Investigation of Composite Formation Flying Using Disturbance-Free Payloads

Precise formation control is increasingly demanded in high-resolution remote sensing formations, gravitational detection interferometers and distributed space telescopes. One composite formation flying method using disturbance-free payloads was previously proposed to enhance formation accuracy and payload stability. This method divided satellite formation into coarse formation using conventional satellite buses and fine formation using precise payloads. To verify the effectiveness of the proposed formation method and the payload stability performance, this paper develops an experimental system using two air-floating satellite prototypes. First, the experimental design is proposed and the experimental system model is established. Second, the experimental prototype development and system architecture are described in detail. Finally, the composite formation flying effectiveness is further demonstrated by coarse and fine formation control experiments. The experiment results indicate that the composite formation flying method effectively improves the formation accuracy for distributed payloads and isolates microvibrations from satellite buses to enhance payload stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信