使用无干扰有效载荷进行复合编队飞行的实验研究

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Zijun Xiong, Qing Li, Hongjie Yang, Lei Liu
{"title":"使用无干扰有效载荷进行复合编队飞行的实验研究","authors":"Zijun Xiong,&nbsp;Qing Li,&nbsp;Hongjie Yang,&nbsp;Lei Liu","doi":"10.1007/s12217-024-10119-7","DOIUrl":null,"url":null,"abstract":"<div><p>Precise formation control is increasingly demanded in high-resolution remote sensing formations, gravitational detection interferometers and distributed space telescopes. One composite formation flying method using disturbance-free payloads was previously proposed to enhance formation accuracy and payload stability. This method divided satellite formation into coarse formation using conventional satellite buses and fine formation using precise payloads. To verify the effectiveness of the proposed formation method and the payload stability performance, this paper develops an experimental system using two air-floating satellite prototypes. First, the experimental design is proposed and the experimental system model is established. Second, the experimental prototype development and system architecture are described in detail. Finally, the composite formation flying effectiveness is further demonstrated by coarse and fine formation control experiments. The experiment results indicate that the composite formation flying method effectively improves the formation accuracy for distributed payloads and isolates microvibrations from satellite buses to enhance payload stability.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigation of Composite Formation Flying Using Disturbance-Free Payloads\",\"authors\":\"Zijun Xiong,&nbsp;Qing Li,&nbsp;Hongjie Yang,&nbsp;Lei Liu\",\"doi\":\"10.1007/s12217-024-10119-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Precise formation control is increasingly demanded in high-resolution remote sensing formations, gravitational detection interferometers and distributed space telescopes. One composite formation flying method using disturbance-free payloads was previously proposed to enhance formation accuracy and payload stability. This method divided satellite formation into coarse formation using conventional satellite buses and fine formation using precise payloads. To verify the effectiveness of the proposed formation method and the payload stability performance, this paper develops an experimental system using two air-floating satellite prototypes. First, the experimental design is proposed and the experimental system model is established. Second, the experimental prototype development and system architecture are described in detail. Finally, the composite formation flying effectiveness is further demonstrated by coarse and fine formation control experiments. The experiment results indicate that the composite formation flying method effectively improves the formation accuracy for distributed payloads and isolates microvibrations from satellite buses to enhance payload stability.</p></div>\",\"PeriodicalId\":707,\"journal\":{\"name\":\"Microgravity Science and Technology\",\"volume\":\"36 4\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microgravity Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-024-10119-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10119-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

高分辨率遥感编队、引力探测干涉仪和分布式空间望远镜对精确编队控制的要求越来越高。以前曾提出过一种使用无干扰有效载荷的复合编队飞行方法,以提高编队精度和有效载荷的稳定性。该方法将卫星编队分为使用常规卫星总线的粗编队和使用精确有效载荷的细编队。为了验证所提编队方法的有效性和有效载荷的稳定性能,本文利用两个气浮卫星原型机开发了一个实验系统。首先,提出了实验设计并建立了实验系统模型。其次,详细介绍了实验原型的开发和系统结构。最后,通过粗编队和细编队控制实验进一步证明了复合编队飞行的有效性。实验结果表明,复合编队飞行方法有效提高了分布式有效载荷的编队精度,并隔离了卫星总线的微振动,增强了有效载荷的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Experimental Investigation of Composite Formation Flying Using Disturbance-Free Payloads

Experimental Investigation of Composite Formation Flying Using Disturbance-Free Payloads

Experimental Investigation of Composite Formation Flying Using Disturbance-Free Payloads

Precise formation control is increasingly demanded in high-resolution remote sensing formations, gravitational detection interferometers and distributed space telescopes. One composite formation flying method using disturbance-free payloads was previously proposed to enhance formation accuracy and payload stability. This method divided satellite formation into coarse formation using conventional satellite buses and fine formation using precise payloads. To verify the effectiveness of the proposed formation method and the payload stability performance, this paper develops an experimental system using two air-floating satellite prototypes. First, the experimental design is proposed and the experimental system model is established. Second, the experimental prototype development and system architecture are described in detail. Finally, the composite formation flying effectiveness is further demonstrated by coarse and fine formation control experiments. The experiment results indicate that the composite formation flying method effectively improves the formation accuracy for distributed payloads and isolates microvibrations from satellite buses to enhance payload stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microgravity Science and Technology
Microgravity Science and Technology 工程技术-工程:宇航
CiteScore
3.50
自引率
44.40%
发文量
96
期刊介绍: Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity. Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges). Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are: − materials science − fluid mechanics − process engineering − physics − chemistry − heat and mass transfer − gravitational biology − radiation biology − exobiology and astrobiology − human physiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信