ACS ES&T engineering最新文献

筛选
英文 中文
Electrochemical Phosphorus Recovery from Anaerobically Digested Sludge: Improving Product Purity and Concentration 从厌氧消化污泥中电化学回收磷:提高产品纯度和浓度
IF 7.1
ACS ES&T engineering Pub Date : 2024-06-28 DOI: 10.1021/acsestengg.4c00172
Zixuan Wang, Emma Thompson Brewster, Siyang Xing, Zhen He
{"title":"Electrochemical Phosphorus Recovery from Anaerobically Digested Sludge: Improving Product Purity and Concentration","authors":"Zixuan Wang, Emma Thompson Brewster, Siyang Xing, Zhen He","doi":"10.1021/acsestengg.4c00172","DOIUrl":"https://doi.org/10.1021/acsestengg.4c00172","url":null,"abstract":"Recovering high-concentration and high-quality phosphorus (P) from municipal sludge presents significant technical challenges. Herein, an electrochemical phosphorus recovery system (EPRS) was developed to treat the anaerobically digested sludge (ADS), featuring a leaching unit for P leaching and a recovery unit for P separation. The leaching unit consistently reduced the ADS pH from 7.5 to 3.3 and elevated the dissolved ortho-P concentration from 65.7 ± 19.7 to an average of 215.2 ± 44.6 mg L<sup>–1</sup>. The recovery unit achieved a P recovery efficiency of 74.8 ± 7.5% until reaching a maximum ortho-P concentration of ∼4040 mg L<sup>–1</sup> after 33 cycles. This maximum concentration could potentially be increased by adjusting the anolyte pH to 3–4 as predicted by a mechanistic model. Mass distribution analysis revealed that 54% of total P input was in the final anolyte of the recovery unit, which contained less than 1% of Mn, Al, Zn, Cu, Pb, Cd, and Ni that were in the ADS. However, 10% of total As was detected in the recovery unit anolyte, likely because of chemical speciation. The solid product from the EPRS consisted of struvite and magnesium phosphate. Although the leaching unit was the main energy and chemical consumer, it significantly reduced the total coliform levels that satisfied the USEPA Class A pathogen standards.","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141513480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinct Mechanisms between Free Iron Species and Magnetite Addition in Anaerobic Digestion on Alleviating Ammonia Inhibition 厌氧消化中的游离铁物种和磁铁矿添加物在缓解氨抑制作用方面的不同机制
IF 7.4
ACS ES&T engineering Pub Date : 2024-06-28 DOI: 10.1021/acsestengg.4c0017110.1021/acsestengg.4c00171
Xiao-Feng Dai, Yanru Bai, Shu-Juan Lian*, Xue-Jiao Qi, Kai Feng, Shan-Fei Fu* and Rong-Bo Guo, 
{"title":"Distinct Mechanisms between Free Iron Species and Magnetite Addition in Anaerobic Digestion on Alleviating Ammonia Inhibition","authors":"Xiao-Feng Dai,&nbsp;Yanru Bai,&nbsp;Shu-Juan Lian*,&nbsp;Xue-Jiao Qi,&nbsp;Kai Feng,&nbsp;Shan-Fei Fu* and Rong-Bo Guo,&nbsp;","doi":"10.1021/acsestengg.4c0017110.1021/acsestengg.4c00171","DOIUrl":"https://doi.org/10.1021/acsestengg.4c00171https://doi.org/10.1021/acsestengg.4c00171","url":null,"abstract":"<p >Ammonia inhibition often occurs during anaerobic digestion (AD) of the protein-rich substrate. Iron-containing substances were proved to be efficient in alleviating the ammonia stress. However, the mechanisms behind, especially the distinct impacts of different forms of iron materials, are not fully revealed. Here, the alleviating performances of FeCl<sub>3</sub> and Fe<sub>3</sub>O<sub>4</sub> on AD systems under ammonia stress were investigated. Moreover, the mechanisms behind these were revealed and compared at the transcriptional level. Results showed that FeCl<sub>3</sub> and Fe<sub>3</sub>O<sub>4</sub> additions with an equal amount of iron element content (1.29 mM) led to the increased cumulative biogas and methane yields under an ammonia concentration of 3 g/L. Furthermore, the addition of iron-containing substances alleviated the accumulation of volatile fatty acids (VFAs) and extracellular polymeric substances (soluble carbohydrates and protein) caused by ammonia stress, which also had an obvious positive effect on the electron transfer capability. Microbial analysis demonstrated that the microbes (e.g., orders <i>Methanosarcinales</i>, <i>Clostridiales</i>, and <i>Syntrophobacterales</i>) associated with direct interspecies electron transfer (DIET), syntrophic acetate oxidization, and degradation of organic compounds were enriched. Metatranscriptomic analysis showed that ammonia inhibited the AD process by disrupting cellular redox homeostasis, infecting the ATPase activity, affecting cellular energy supply, inhibiting methane-producing enzyme activity, and suppressing the expression of cell conductive structure genes. Meanwhile, the addition of FeCl<sub>3</sub> and Fe<sub>3</sub>O<sub>4</sub> enhanced the cellular basal metabolism and energy supply, as well as microbial electron transfer and enzymic activities on methanogenesis. Metatranscriptomic analysis indicated that the addition of free iron species (FeCl<sub>3</sub>) can relieve the ammonia stress on syntrophic propionate and acetate oxidizing bacteria, enhance DIET by stimulating the synthesis of c-type cytochrome, and thus promote methane production. Meanwhile, Fe<sub>3</sub>O<sub>4</sub> may promote methane production by stimulating the expression of related genes and facilitating electron transfer in the AD system as a capacitor. Overall, the results demonstrated that ferric chloride and magnetite can alleviate the ammonia inhibition in the AD process of high-nitrogen waste through different mechanisms.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":null,"pages":null},"PeriodicalIF":7.4,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical Phosphorus Recovery from Anaerobically Digested Sludge: Improving Product Purity and Concentration 从厌氧消化污泥中电化学回收磷:提高产品纯度和浓度
IF 7.4
ACS ES&T engineering Pub Date : 2024-06-28 DOI: 10.1021/acsestengg.4c0017210.1021/acsestengg.4c00172
Zixuan Wang, Emma Thompson Brewster, Siyang Xing and Zhen He*, 
{"title":"Electrochemical Phosphorus Recovery from Anaerobically Digested Sludge: Improving Product Purity and Concentration","authors":"Zixuan Wang,&nbsp;Emma Thompson Brewster,&nbsp;Siyang Xing and Zhen He*,&nbsp;","doi":"10.1021/acsestengg.4c0017210.1021/acsestengg.4c00172","DOIUrl":"https://doi.org/10.1021/acsestengg.4c00172https://doi.org/10.1021/acsestengg.4c00172","url":null,"abstract":"<p >Recovering high-concentration and high-quality phosphorus (P) from municipal sludge presents significant technical challenges. Herein, an electrochemical phosphorus recovery system (EPRS) was developed to treat the anaerobically digested sludge (ADS), featuring a leaching unit for P leaching and a recovery unit for P separation. The leaching unit consistently reduced the ADS pH from 7.5 to 3.3 and elevated the dissolved ortho-P concentration from 65.7 ± 19.7 to an average of 215.2 ± 44.6 mg L<sup>–1</sup>. The recovery unit achieved a P recovery efficiency of 74.8 ± 7.5% until reaching a maximum ortho-P concentration of ∼4040 mg L<sup>–1</sup> after 33 cycles. This maximum concentration could potentially be increased by adjusting the anolyte pH to 3–4 as predicted by a mechanistic model. Mass distribution analysis revealed that 54% of total P input was in the final anolyte of the recovery unit, which contained less than 1% of Mn, Al, Zn, Cu, Pb, Cd, and Ni that were in the ADS. However, 10% of total As was detected in the recovery unit anolyte, likely because of chemical speciation. The solid product from the EPRS consisted of struvite and magnesium phosphate. Although the leaching unit was the main energy and chemical consumer, it significantly reduced the total coliform levels that satisfied the USEPA Class A pathogen standards.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":null,"pages":null},"PeriodicalIF":7.4,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmentally Friendly Recovery of Li2CO3 from Spent Lithium-Ion Batteries by Oxidation and Selective Leaching Process 利用氧化和选择性浸出工艺从废旧锂离子电池中回收对环境友好的 Li2CO3
IF 7.4
ACS ES&T engineering Pub Date : 2024-06-27 DOI: 10.1021/acsestengg.4c0013410.1021/acsestengg.4c00134
Ying Zheng, Zhe Yang, Zhaoyang Li, Guang Hu, Sha Liang, Wenbo Yu, Shushan Yuan, Huabo Duan, Liang Huang, Jingping Hu*, Huijie Hou and Jiakuan Yang*, 
{"title":"Environmentally Friendly Recovery of Li2CO3 from Spent Lithium-Ion Batteries by Oxidation and Selective Leaching Process","authors":"Ying Zheng,&nbsp;Zhe Yang,&nbsp;Zhaoyang Li,&nbsp;Guang Hu,&nbsp;Sha Liang,&nbsp;Wenbo Yu,&nbsp;Shushan Yuan,&nbsp;Huabo Duan,&nbsp;Liang Huang,&nbsp;Jingping Hu*,&nbsp;Huijie Hou and Jiakuan Yang*,&nbsp;","doi":"10.1021/acsestengg.4c0013410.1021/acsestengg.4c00134","DOIUrl":"https://doi.org/10.1021/acsestengg.4c00134https://doi.org/10.1021/acsestengg.4c00134","url":null,"abstract":"<p >The extraction of valuable metals from spent Ni–Co–Mn oxide (NCM) cathodes typically encounters the use of strong acids or alkalis, often leading to secondary pollution. Herein, an environmentally friendly recovery route for the selective extraction of lithium (Li) by using sodium persulfate (Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub>) as the sole leaching agent was proposed. Under the optimized conditions, the leaching efficiency of Li achieved 98.02%, and the selective leaching efficiency of Li was 94.80%. Moreover, the lithium carbonate (Li<sub>2</sub>CO<sub>3</sub>) product was recovered from the Li-rich filtrate with a high purity of 99.5%. The mechanism of Li selective leaching was revealed by means of wet chemistry, kinetics, thermodynamics, and solid-phase analysis. During selective leaching, free radicals SO<sub>4</sub><sup>•–</sup> and <sup>•</sup>OH, hydron ion (H<sup>+</sup>), and sodium ion (Na<sup>+</sup>) were generated by Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub>. These free radicals can increase the redox potential of the leaching system. Under these conditions, Co and Mn elements were both maintained in a high valence state and the cathode structure was collapsed, thus contributing to the leaching of Li. The proposed environmentally friendly recovery process of Li from spent NCM cathodes is promising for practical applications, offering significant economic benefits.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":null,"pages":null},"PeriodicalIF":7.4,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141956662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering Ternary Atomic-Scale Catalytic Sites to Efficiently Remove Concentrated 4-Chlorophenol 设计三元原子级催化位点,高效去除高浓度 4-氯苯酚
IF 7.1
ACS ES&T engineering Pub Date : 2024-06-27 DOI: 10.1021/acsestengg.4c00174
Xiao Ge, Wenjing Li, Jie Wang, Yangfan Yuan, Hongxia Xu, Bin Gao, Shengsen Wang, Xiaozhi Wang, Yuen Wu
{"title":"Engineering Ternary Atomic-Scale Catalytic Sites to Efficiently Remove Concentrated 4-Chlorophenol","authors":"Xiao Ge, Wenjing Li, Jie Wang, Yangfan Yuan, Hongxia Xu, Bin Gao, Shengsen Wang, Xiaozhi Wang, Yuen Wu","doi":"10.1021/acsestengg.4c00174","DOIUrl":"https://doi.org/10.1021/acsestengg.4c00174","url":null,"abstract":"The ability of single-atom catalysts (SSCs) to degrade refractory organic pollutants in peroxymonosulfate (PMS)-based heterogeneous catalysis can be compromised due to less diversity in reactive species and unfavorable affinity with PMS. Herein, the as-prepared ternary atomic-scale site catalyst comprising single-atomic Fe/Ce sites and Fe cluster sites (Fe-Ce-BC-900) could completely remove concentrated 4-chlorophenol (4-CP, 40 mg L<sup>–1</sup>) in aqueous solution within 30 min, 1.20–1.35 times more efficient than Fe SSCs or Ce SSCs. The reactive oxygen species (ROSs) could be highly diversified on the ternary atomic-scale sites because of the Janus mechanisms: the production of nonradicals (<sup>1</sup>O<sub>2</sub>) through PMS oxidation and the generation of radicals (SO<sub>4</sub><sup>•–</sup> and •OH) via PMS reduction on the ternary catalytic sites, which accounted for oxidative degradation of concentrated 4-CP. Density functional theory (DFT) calculations indicated that the ternary catalytic sites enhanced the uneven charge distribution and down-regulated the d-band center of Fe-Ce-BC-900 as compared to Fe-BC-900 and Ce-BC-900 catalysts, thereby optimizing the adsorption energy of PMS molecules and promoting electron transfer between metal sites and adjacent oxygen atoms. This study provides valuable insights into the configuration of multicatalytic sites for detoxification of organic-contaminants-polluted wastewater.","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering Ternary Atomic-Scale Catalytic Sites to Efficiently Remove Concentrated 4-Chlorophenol 设计三元原子级催化位点,高效去除高浓度 4-氯苯酚
IF 7.4
ACS ES&T engineering Pub Date : 2024-06-27 DOI: 10.1021/acsestengg.4c0017410.1021/acsestengg.4c00174
Xiao Ge, Wenjing Li, Jie Wang, Yangfan Yuan, Hongxia Xu, Bin Gao, Shengsen Wang*, Xiaozhi Wang and Yuen Wu, 
{"title":"Engineering Ternary Atomic-Scale Catalytic Sites to Efficiently Remove Concentrated 4-Chlorophenol","authors":"Xiao Ge,&nbsp;Wenjing Li,&nbsp;Jie Wang,&nbsp;Yangfan Yuan,&nbsp;Hongxia Xu,&nbsp;Bin Gao,&nbsp;Shengsen Wang*,&nbsp;Xiaozhi Wang and Yuen Wu,&nbsp;","doi":"10.1021/acsestengg.4c0017410.1021/acsestengg.4c00174","DOIUrl":"https://doi.org/10.1021/acsestengg.4c00174https://doi.org/10.1021/acsestengg.4c00174","url":null,"abstract":"<p >The ability of single-atom catalysts (SSCs) to degrade refractory organic pollutants in peroxymonosulfate (PMS)-based heterogeneous catalysis can be compromised due to less diversity in reactive species and unfavorable affinity with PMS. Herein, the as-prepared ternary atomic-scale site catalyst comprising single-atomic Fe/Ce sites and Fe cluster sites (Fe-Ce-BC-900) could completely remove concentrated 4-chlorophenol (4-CP, 40 mg L<sup>–1</sup>) in aqueous solution within 30 min, 1.20–1.35 times more efficient than Fe SSCs or Ce SSCs. The reactive oxygen species (ROSs) could be highly diversified on the ternary atomic-scale sites because of the Janus mechanisms: the production of nonradicals (<sup>1</sup>O<sub>2</sub>) through PMS oxidation and the generation of radicals (SO<sub>4</sub><sup>•–</sup> and •OH) via PMS reduction on the ternary catalytic sites, which accounted for oxidative degradation of concentrated 4-CP. Density functional theory (DFT) calculations indicated that the ternary catalytic sites enhanced the uneven charge distribution and down-regulated the d-band center of Fe-Ce-BC-900 as compared to Fe-BC-900 and Ce-BC-900 catalysts, thereby optimizing the adsorption energy of PMS molecules and promoting electron transfer between metal sites and adjacent oxygen atoms. This study provides valuable insights into the configuration of multicatalytic sites for detoxification of organic-contaminants-polluted wastewater.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":null,"pages":null},"PeriodicalIF":7.4,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmentally Friendly Recovery of Li2CO3 from Spent Lithium-Ion Batteries by Oxidation and Selective Leaching Process 利用氧化和选择性浸出工艺从废旧锂离子电池中回收对环境友好的 Li2CO3
IF 7.1
ACS ES&T engineering Pub Date : 2024-06-27 DOI: 10.1021/acsestengg.4c00134
Ying Zheng, Zhe Yang, Zhaoyang Li, Guang Hu, Sha Liang, Wenbo Yu, Shushan Yuan, Huabo Duan, Liang Huang, Jingping Hu, Huijie Hou, Jiakuan Yang
{"title":"Environmentally Friendly Recovery of Li2CO3 from Spent Lithium-Ion Batteries by Oxidation and Selective Leaching Process","authors":"Ying Zheng, Zhe Yang, Zhaoyang Li, Guang Hu, Sha Liang, Wenbo Yu, Shushan Yuan, Huabo Duan, Liang Huang, Jingping Hu, Huijie Hou, Jiakuan Yang","doi":"10.1021/acsestengg.4c00134","DOIUrl":"https://doi.org/10.1021/acsestengg.4c00134","url":null,"abstract":"The extraction of valuable metals from spent Ni–Co–Mn oxide (NCM) cathodes typically encounters the use of strong acids or alkalis, often leading to secondary pollution. Herein, an environmentally friendly recovery route for the selective extraction of lithium (Li) by using sodium persulfate (Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub>) as the sole leaching agent was proposed. Under the optimized conditions, the leaching efficiency of Li achieved 98.02%, and the selective leaching efficiency of Li was 94.80%. Moreover, the lithium carbonate (Li<sub>2</sub>CO<sub>3</sub>) product was recovered from the Li-rich filtrate with a high purity of 99.5%. The mechanism of Li selective leaching was revealed by means of wet chemistry, kinetics, thermodynamics, and solid-phase analysis. During selective leaching, free radicals SO<sub>4</sub><sup>•–</sup> and <sup>•</sup>OH, hydron ion (H<sup>+</sup>), and sodium ion (Na<sup>+</sup>) were generated by Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub>. These free radicals can increase the redox potential of the leaching system. Under these conditions, Co and Mn elements were both maintained in a high valence state and the cathode structure was collapsed, thus contributing to the leaching of Li. The proposed environmentally friendly recovery process of Li from spent NCM cathodes is promising for practical applications, offering significant economic benefits.","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141513481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intermittent Heat Shocks Can Reduce Methanogenesis and Increase Generation of Longer-Chain Volatile Fatty Acids in Anaerobic Bioreactors 间歇性热冲击可减少厌氧生物反应器中的甲烷生成并增加长链挥发性脂肪酸的产生
IF 7.4
ACS ES&T engineering Pub Date : 2024-06-25 DOI: 10.1021/acsestengg.4c00090
Hezhou Ding,  and , Douglas F. Call*, 
{"title":"Intermittent Heat Shocks Can Reduce Methanogenesis and Increase Generation of Longer-Chain Volatile Fatty Acids in Anaerobic Bioreactors","authors":"Hezhou Ding,&nbsp; and ,&nbsp;Douglas F. Call*,&nbsp;","doi":"10.1021/acsestengg.4c00090","DOIUrl":"10.1021/acsestengg.4c00090","url":null,"abstract":"<p >Production of volatile fatty acids (VFAs) from organic wastes in anaerobic bioreactors can be increased if methanogenesis is inhibited. Pretreating bioreactor inocula at elevated temperatures slows methanogenesis in the short term, but over the long term, methanogenic activity often recovers. Here, we examined whether elevated temperatures or “heat shocks” (HSs) applied at the onset of CH<sub>4</sub> production can inhibit methanogenesis and increase VFA generation. The effects of multiple 15–30 min intermittent HSs at 50, 65, or 80 °C on mesophilic bioreactors compared to controls at 37 °C were studied. All HS temperatures significantly reduced CH<sub>4</sub> production (70–90%) without decreasing VFA production. After 135 days, total VFA concentrations in the HS treatments were around four times larger than the controls. The HSs led to appreciable shifts in the VFA profiles. Longer-chain VFAs, especially caproate, increased more than 6-fold in the 65 °C treated bioreactors. The microbial communities in the HS bioreactors were significantly different than the controls. The relative abundances of putative chain-elongating bacteria increased and those of syntrophic acetate-forming bacteria decreased when the HSs were applied. Our findings show that intermittent HSs may provide a chemical-free methanogen-specific strategy to improve the production of VFAs, especially longer-chain species.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":null,"pages":null},"PeriodicalIF":7.4,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141530550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sulfate Radicals-Mediated Chemiluminescence Production with Peroxydisulfate and Hydroquinone as Coreactants: Mechanism and Environmental Applications 以过氧化二硫酸盐和对苯二酚为核心反应物的硫酸根自由基介导的化学发光:机理与环境应用
IF 7.1
ACS ES&T engineering Pub Date : 2024-06-21 DOI: 10.1021/acsestengg.4c00219
Fuqiang Liu, Yang Liu, Hongyu Dong, Huixin Shao, Bin Su, Tianshu Zhou, Xiaohong Guan
{"title":"Sulfate Radicals-Mediated Chemiluminescence Production with Peroxydisulfate and Hydroquinone as Coreactants: Mechanism and Environmental Applications","authors":"Fuqiang Liu, Yang Liu, Hongyu Dong, Huixin Shao, Bin Su, Tianshu Zhou, Xiaohong Guan","doi":"10.1021/acsestengg.4c00219","DOIUrl":"https://doi.org/10.1021/acsestengg.4c00219","url":null,"abstract":"Chemiluminescence (CL) is an attractive method for real-time quantification of toxic contaminants or intermediates generated during advanced oxidation processes due to its high sensitivity, low detection limit, and wide linear range. In this study, we present an unprecedented intrinsic CL phenomenon observed in an alkaline aqueous solution containing hydroquinone (HQ) and peroxydisulfate (PDS, S<sub>2</sub>O<sub>8</sub><sup>2–</sup>). Mechanistic investigations unveil a two-stage process for CL production: sulfate radical (SO<sub>4</sub><sup>•–</sup>) generation and CL emission. Initially, the highly oxidizing SO<sub>4</sub><sup>•–</sup> are formed via the decomposition of PDS by semiquinone radicals, originating from the comproportionation reaction of HQ with benzoquinone that is generated by the reaction of HQ with OH<sup>–</sup> in the presence of dissolved oxygen. Subsequently, SO<sub>4</sub><sup>•–</sup> promptly oxidizes the residual HQ to an excited-state light-emitting species, which returns to its ground-state, accompanied by a transient and intense light emission. Notably, HQ plays dual roles in the CL process by both participating in the generation of SO<sub>4</sub><sup>•–</sup> and serving as the precursor of the light-emitting substrate. The proposed CL system is developed to quantify trace amounts of HQ and real-time monitor the degradation kinetics of phenols. These findings hold considerable significance in chemical analysis, intermediate identification, and advanced oxidation processes.","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multicolored Carbon Quantum Dots-Based Expanded Fluorescence Strategy for High-Throughput Detection of Various Water Pollutants 基于多色碳量子点的扩展荧光策略用于高通量检测各种水污染物
IF 7.1
ACS ES&T engineering Pub Date : 2024-06-21 DOI: 10.1021/acsestengg.4c00265
Feiyu Liu, Yiming Ge, Defeng Xing, Nanqi Ren, Shih-Hsin Ho
{"title":"Multicolored Carbon Quantum Dots-Based Expanded Fluorescence Strategy for High-Throughput Detection of Various Water Pollutants","authors":"Feiyu Liu, Yiming Ge, Defeng Xing, Nanqi Ren, Shih-Hsin Ho","doi":"10.1021/acsestengg.4c00265","DOIUrl":"https://doi.org/10.1021/acsestengg.4c00265","url":null,"abstract":"Fluorescence nanosensors are highly in demand for the rapid detection of water pollutants due to their advantages of high economic feasibility, high-throughput, and highly sensitive response. However, previous studies have primarily focused on specific pollutants due to the limited electrical band structure of fluorescence nanosensors. Therefore, to broaden the applicability of fluorescence detection techniques, it is critical to develop a new fluorescence nanosensor with a diversified spectrum (macroscopically represented by multiple colors). In this work, four different colored carbon quantum dots (CDs) were prepared without the need for additional separation or purification steps. Through comprehensive characterization and theoretical modeling, the fluorescence colors were attributed to size effects, configuration, and the spatial location of nitrogen. The mechanism of fluorescence excitation and emission in the as-prepared nanosensor was clearly illustrated using hole–electron analysis. Furthermore, a test set comprising universal heavy metals and antibiotics was employed to investigate the feasibility of the rapid fluorescence detection of multicolor CDs. Additionally, a smartphone-app-based fluorescence color detection device was developed to complete the high-throughput in situ examination of real water samples. This work offers a new perspective on broadening the application of fluorescence detection technology and serves as a resource for rapid, high-volume, and in situ fluorescence detection of water pollutants.","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信