Houguang Wang, Gaoming Wu, Luning Wang, Yichang Wang, Jianguo Lu, Bin Yang, Yang Hou, Lecheng Lei and Zhongjian Li*,
{"title":"电微生物混合系统用于高盐废水高纯硫回收","authors":"Houguang Wang, Gaoming Wu, Luning Wang, Yichang Wang, Jianguo Lu, Bin Yang, Yang Hou, Lecheng Lei and Zhongjian Li*, ","doi":"10.1021/acsestengg.5c00157","DOIUrl":null,"url":null,"abstract":"<p >High-salinity wastewater contains a high concentration of sulfate (SO<sub>4</sub><sup>2–</sup>), posing environmental risks while offering potential for resource recovery. This study developed an electromicrobial hybrid system to achieve simultaneous SO<sub>4</sub><sup>2–</sup> removal and elemental sulfur (S<sup>0</sup>) recovery by integrating electrolytic hydrogen-mediated microbial sulfate reduction, H<sub>2</sub>S stripping, and off-field electrochemical oxidation. Sulfate reduction occurred in the cathode of the electrolytic-hydrogen-fed reactor, where the generated sulfide was stripped as H<sub>2</sub>S into an off-field oxidation unit using a FeCN<sub>6</sub><sup>3–</sup>/FeCN<sub>6</sub><sup>4–</sup> redox mediator. FeCN<sub>6</sub><sup>3–</sup> oxidized H<sub>2</sub>S to S<sup>0</sup>, while FeCN<sub>6</sub><sup>4–</sup> was regenerated to FeCN<sub>6</sub><sup>3–</sup> at the anode. The reactor performance was enhanced by introducing PU@RGO@MnO<sub>2</sub> carriers, with the optimal SO<sub>4</sub><sup>2–</sup> removal current identified as 300 mA (6.7 A m<sup>–2</sup>). SO<sub>4</sub><sup>2–</sup> removal and S<sup>0</sup> recovery performance was tested under this condition. H<sub>2</sub>S stripping coupled with sulfate reduction and off-field sulfide oxidation eliminated the inhibition of high concentration sulfide on sulfate-reducing bacteria, achieving 100% H<sub>2</sub>S-to-S<sup>0</sup> conversion. Therefore, the system achieved an efficient SO<sub>4</sub><sup>2–</sup> removal rate of 464.3 ± 7.1 mg of SO<sub>4</sub><sup>2–</sup>-S L<sup>–1</sup> d<sup>–1</sup> and a S<sup>0</sup> production rate of 450.6 ± 8.6 mg of S<sup>0</sup>-S L<sup>–1</sup> d<sup>–1</sup> (SO<sub>4</sub><sup>2–</sup> removal efficiency = 92.6 ± 1.3%; S<sup>0</sup> recovery efficiency = 89.8 ± 1.6%), with a remarkable electrical energy efficiency of 62.5 ± 1.9% and an energy consumption of 20 kWh kg S<sup>0</sup><sup>–1</sup>. The recovered S<sup>0</sup> exhibited high purity (99.15%) and could be efficiently separated via gravity settling. The recovered S<sup>0</sup> exhibited an electrochemical performance comparable to that of commercial S<sup>0</sup> in the lithium–sulfur battery. This study provides a sustainable approach for wastewater treatment and sulfur recovery, bridging environmental remediation with energy storage application.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"5 9","pages":"2212–2223"},"PeriodicalIF":6.7000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromicrobial Hybrid System for High-Purity Sulfur Recovery from High-Salinity Wastewater\",\"authors\":\"Houguang Wang, Gaoming Wu, Luning Wang, Yichang Wang, Jianguo Lu, Bin Yang, Yang Hou, Lecheng Lei and Zhongjian Li*, \",\"doi\":\"10.1021/acsestengg.5c00157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >High-salinity wastewater contains a high concentration of sulfate (SO<sub>4</sub><sup>2–</sup>), posing environmental risks while offering potential for resource recovery. This study developed an electromicrobial hybrid system to achieve simultaneous SO<sub>4</sub><sup>2–</sup> removal and elemental sulfur (S<sup>0</sup>) recovery by integrating electrolytic hydrogen-mediated microbial sulfate reduction, H<sub>2</sub>S stripping, and off-field electrochemical oxidation. Sulfate reduction occurred in the cathode of the electrolytic-hydrogen-fed reactor, where the generated sulfide was stripped as H<sub>2</sub>S into an off-field oxidation unit using a FeCN<sub>6</sub><sup>3–</sup>/FeCN<sub>6</sub><sup>4–</sup> redox mediator. FeCN<sub>6</sub><sup>3–</sup> oxidized H<sub>2</sub>S to S<sup>0</sup>, while FeCN<sub>6</sub><sup>4–</sup> was regenerated to FeCN<sub>6</sub><sup>3–</sup> at the anode. The reactor performance was enhanced by introducing PU@RGO@MnO<sub>2</sub> carriers, with the optimal SO<sub>4</sub><sup>2–</sup> removal current identified as 300 mA (6.7 A m<sup>–2</sup>). SO<sub>4</sub><sup>2–</sup> removal and S<sup>0</sup> recovery performance was tested under this condition. H<sub>2</sub>S stripping coupled with sulfate reduction and off-field sulfide oxidation eliminated the inhibition of high concentration sulfide on sulfate-reducing bacteria, achieving 100% H<sub>2</sub>S-to-S<sup>0</sup> conversion. Therefore, the system achieved an efficient SO<sub>4</sub><sup>2–</sup> removal rate of 464.3 ± 7.1 mg of SO<sub>4</sub><sup>2–</sup>-S L<sup>–1</sup> d<sup>–1</sup> and a S<sup>0</sup> production rate of 450.6 ± 8.6 mg of S<sup>0</sup>-S L<sup>–1</sup> d<sup>–1</sup> (SO<sub>4</sub><sup>2–</sup> removal efficiency = 92.6 ± 1.3%; S<sup>0</sup> recovery efficiency = 89.8 ± 1.6%), with a remarkable electrical energy efficiency of 62.5 ± 1.9% and an energy consumption of 20 kWh kg S<sup>0</sup><sup>–1</sup>. The recovered S<sup>0</sup> exhibited high purity (99.15%) and could be efficiently separated via gravity settling. The recovered S<sup>0</sup> exhibited an electrochemical performance comparable to that of commercial S<sup>0</sup> in the lithium–sulfur battery. This study provides a sustainable approach for wastewater treatment and sulfur recovery, bridging environmental remediation with energy storage application.</p>\",\"PeriodicalId\":7008,\"journal\":{\"name\":\"ACS ES&T engineering\",\"volume\":\"5 9\",\"pages\":\"2212–2223\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsestengg.5c00157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.5c00157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Electromicrobial Hybrid System for High-Purity Sulfur Recovery from High-Salinity Wastewater
High-salinity wastewater contains a high concentration of sulfate (SO42–), posing environmental risks while offering potential for resource recovery. This study developed an electromicrobial hybrid system to achieve simultaneous SO42– removal and elemental sulfur (S0) recovery by integrating electrolytic hydrogen-mediated microbial sulfate reduction, H2S stripping, and off-field electrochemical oxidation. Sulfate reduction occurred in the cathode of the electrolytic-hydrogen-fed reactor, where the generated sulfide was stripped as H2S into an off-field oxidation unit using a FeCN63–/FeCN64– redox mediator. FeCN63– oxidized H2S to S0, while FeCN64– was regenerated to FeCN63– at the anode. The reactor performance was enhanced by introducing PU@RGO@MnO2 carriers, with the optimal SO42– removal current identified as 300 mA (6.7 A m–2). SO42– removal and S0 recovery performance was tested under this condition. H2S stripping coupled with sulfate reduction and off-field sulfide oxidation eliminated the inhibition of high concentration sulfide on sulfate-reducing bacteria, achieving 100% H2S-to-S0 conversion. Therefore, the system achieved an efficient SO42– removal rate of 464.3 ± 7.1 mg of SO42–-S L–1 d–1 and a S0 production rate of 450.6 ± 8.6 mg of S0-S L–1 d–1 (SO42– removal efficiency = 92.6 ± 1.3%; S0 recovery efficiency = 89.8 ± 1.6%), with a remarkable electrical energy efficiency of 62.5 ± 1.9% and an energy consumption of 20 kWh kg S0–1. The recovered S0 exhibited high purity (99.15%) and could be efficiently separated via gravity settling. The recovered S0 exhibited an electrochemical performance comparable to that of commercial S0 in the lithium–sulfur battery. This study provides a sustainable approach for wastewater treatment and sulfur recovery, bridging environmental remediation with energy storage application.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.