{"title":"Defect-Rich Molybdenum Disulfide for Improved Hydrogen Production via H2S Reforming with CH4","authors":"Yiwen Wang, Mengfei Zhao, Xiaoxiao Duan, Zheng Wei, Yiming Lu, Guoxia Jiang, Fenglian Zhang* and Zhengping Hao*, ","doi":"10.1021/acsestengg.5c00265","DOIUrl":null,"url":null,"abstract":"<p >H<sub>2</sub>S reforming with CH<sub>4</sub> (H<sub>2</sub>SMR) provides a viable approach for the elimination of hazardous H<sub>2</sub>S and the direct utilization of sour natural gas, efficiently producing CO<sub><i>x</i></sub>-free H<sub>2</sub> while simultaneously yielding high-value-added sulfur chemicals. Herein, MoS<sub>2</sub> catalysts enriched with edge sites and sulfur vacancy defects were fabricated via a cost-effective one-step solvothermal synthesis method and examined for the H<sub>2</sub>SMR reaction. MoS<sub>2</sub> synthesized using ethylene glycol (EG) solvent (MoS<sub>2</sub>-EG) presented oxygen doping and featured fewer layers and a larger interlayer spacing, thus possessing abundant active edge sites and sulfur vacancy defects. Consequently, MoS<sub>2</sub>-EG demonstrated exceptional hydrogen production efficiency and stability, achieving a hydrogen yield of 8.5 mmol/(g min) at 900 °C and a H<sub>2</sub>S/CH<sub>4</sub> molar ratio of 3. The abundant defects and edge sites in MoS<sub>2</sub>-EG contributed to the facile H<sub>2</sub>S activation to preferentially form reactive sulfur species for C–H bond activation, which is responsible for the superior H<sub>2</sub>SMR activity. This study significantly advances the development of high-efficiency, scalable catalysts for H<sub>2</sub>SMR, presenting a transformative approach to utilizing sour natural gas as a resource while addressing environmental challenges.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"5 9","pages":"2358–2367"},"PeriodicalIF":6.7000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.5c00265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
H2S reforming with CH4 (H2SMR) provides a viable approach for the elimination of hazardous H2S and the direct utilization of sour natural gas, efficiently producing COx-free H2 while simultaneously yielding high-value-added sulfur chemicals. Herein, MoS2 catalysts enriched with edge sites and sulfur vacancy defects were fabricated via a cost-effective one-step solvothermal synthesis method and examined for the H2SMR reaction. MoS2 synthesized using ethylene glycol (EG) solvent (MoS2-EG) presented oxygen doping and featured fewer layers and a larger interlayer spacing, thus possessing abundant active edge sites and sulfur vacancy defects. Consequently, MoS2-EG demonstrated exceptional hydrogen production efficiency and stability, achieving a hydrogen yield of 8.5 mmol/(g min) at 900 °C and a H2S/CH4 molar ratio of 3. The abundant defects and edge sites in MoS2-EG contributed to the facile H2S activation to preferentially form reactive sulfur species for C–H bond activation, which is responsible for the superior H2SMR activity. This study significantly advances the development of high-efficiency, scalable catalysts for H2SMR, presenting a transformative approach to utilizing sour natural gas as a resource while addressing environmental challenges.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.