{"title":"利用自保护催化剂去除碱性和重金属存在下烟气中的氮氧化物","authors":"Huan Wang, Fuli Wang, Yongjie Shen, Zaisheng Jin, Yanghailun He, Yuxin Zhang, Qinyi Zhou, Ming Xie, Penglu Wang* and Dengsong Zhang*, ","doi":"10.1021/acsestengg.5c00285","DOIUrl":null,"url":null,"abstract":"<p >Selective catalytic reduction of NO<sub><i>x</i></sub> by ammonia under the exposure of alkaline and heavy metals in fly ash still remains a major challenge for NO<sub><i>x</i></sub> elimination among air pollution control. Herein, self-protective NO<sub><i>x</i></sub> reduction catalysts with remarkable alkaline and heavy metal resistance are originally designed by Ce and Cu dual active metal cations coexchanging attapulgite clays. It is revealed that the inherent Si–OH sites among attapulgite and partially exchanged Cu species effectively captured alkaline and heavy metal cation poisons through coordinate bonding or ion exchanging to protect the active components from being deactivated. Ultimately, highly efficient NO<sub><i>x</i></sub> reduction for stationary source flue gas catalytic purification is realized via the ingenious design of dual metal exchanged clay catalysts that own self-protective capacity to resist alkaline and heavy metal poisoning. This strategy paves the way for the development of low-temperature and high-efficiency denitrification catalysts with alkaline and heavy metal resistance for stationary source flue gas purification.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"5 9","pages":"2380–2390"},"PeriodicalIF":6.7000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elimination of NOx from Flue Gas in the Presence of Alkaline and Heavy Metals via Self-Protective Catalysts\",\"authors\":\"Huan Wang, Fuli Wang, Yongjie Shen, Zaisheng Jin, Yanghailun He, Yuxin Zhang, Qinyi Zhou, Ming Xie, Penglu Wang* and Dengsong Zhang*, \",\"doi\":\"10.1021/acsestengg.5c00285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Selective catalytic reduction of NO<sub><i>x</i></sub> by ammonia under the exposure of alkaline and heavy metals in fly ash still remains a major challenge for NO<sub><i>x</i></sub> elimination among air pollution control. Herein, self-protective NO<sub><i>x</i></sub> reduction catalysts with remarkable alkaline and heavy metal resistance are originally designed by Ce and Cu dual active metal cations coexchanging attapulgite clays. It is revealed that the inherent Si–OH sites among attapulgite and partially exchanged Cu species effectively captured alkaline and heavy metal cation poisons through coordinate bonding or ion exchanging to protect the active components from being deactivated. Ultimately, highly efficient NO<sub><i>x</i></sub> reduction for stationary source flue gas catalytic purification is realized via the ingenious design of dual metal exchanged clay catalysts that own self-protective capacity to resist alkaline and heavy metal poisoning. This strategy paves the way for the development of low-temperature and high-efficiency denitrification catalysts with alkaline and heavy metal resistance for stationary source flue gas purification.</p>\",\"PeriodicalId\":7008,\"journal\":{\"name\":\"ACS ES&T engineering\",\"volume\":\"5 9\",\"pages\":\"2380–2390\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsestengg.5c00285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.5c00285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Elimination of NOx from Flue Gas in the Presence of Alkaline and Heavy Metals via Self-Protective Catalysts
Selective catalytic reduction of NOx by ammonia under the exposure of alkaline and heavy metals in fly ash still remains a major challenge for NOx elimination among air pollution control. Herein, self-protective NOx reduction catalysts with remarkable alkaline and heavy metal resistance are originally designed by Ce and Cu dual active metal cations coexchanging attapulgite clays. It is revealed that the inherent Si–OH sites among attapulgite and partially exchanged Cu species effectively captured alkaline and heavy metal cation poisons through coordinate bonding or ion exchanging to protect the active components from being deactivated. Ultimately, highly efficient NOx reduction for stationary source flue gas catalytic purification is realized via the ingenious design of dual metal exchanged clay catalysts that own self-protective capacity to resist alkaline and heavy metal poisoning. This strategy paves the way for the development of low-temperature and high-efficiency denitrification catalysts with alkaline and heavy metal resistance for stationary source flue gas purification.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.