Investigating the Potential of Engineered Nano-Enabled Microalgae System to Enhance Simultaneous Phycoremediation of 2-Nitroaniline and Carbon Sequestration

IF 6.7 Q1 ENGINEERING, ENVIRONMENTAL
Kavitha Beluri, Luis Pablo S. Covarrubias, Nusrat Easmin, Felicia S. Manciu and Hamidreza Sharifan*, 
{"title":"Investigating the Potential of Engineered Nano-Enabled Microalgae System to Enhance Simultaneous Phycoremediation of 2-Nitroaniline and Carbon Sequestration","authors":"Kavitha Beluri,&nbsp;Luis Pablo S. Covarrubias,&nbsp;Nusrat Easmin,&nbsp;Felicia S. Manciu and Hamidreza Sharifan*,&nbsp;","doi":"10.1021/acsestengg.5c00172","DOIUrl":null,"url":null,"abstract":"<p >Microalgae, particularly <i>Chlorella vulgaris</i> (CV), have gained increasing attention for their role in bioremediation and carbon sequestration due to their high photosynthetic efficiency, rapid biomass production, and ability to mitigate environmental contaminants. This study investigates the potential of an engineered nanoenabled microalgal system to enhance the simultaneous degradation of 2-nitroaniline (2-NA), a persistent nitroaromatic pollutant, and carbon sequestration under the influence of titanium dioxide nanoparticles (TiO<sub>2</sub> NPs). The experimental approach assessed the effects of TiO<sub>2</sub> NPs on CV growth kinetics, photosynthetic pigment synthesis, and CO<sub>2</sub> fixation rates while analyzing the degradation efficiency of 2-NA. Results revealed that 20 mg L<sup>–1</sup> TiO<sub>2</sub> NPs optimized algal growth and photosynthetic activity, leading to a 37.4% increase in biomass productivity and enhanced CO<sub>2</sub> sequestration rates compared to control. Extensive characterization including Raman and Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) confirmed TiO<sub>2</sub> NP interactions with algal cellular components, demonstrating maintained structural integrity and biocompatibility. However, coexposure to 2-NA induced oxidative stress, evidenced by significant upregulation of catalase (CAT) and superoxide dismutase (SOD) activities, indicating a defensive response. The TiO<sub>2</sub>-integrated CV system demonstrated a 59.8% degradation efficiency of 2-NA at 10 mg L<sup>–1</sup>, surpassing biological degradation alone (39%). These findings underscore the dual benefits of integrating nanotechnology with microalgal systems for environmental remediation, offering a circular bioeconomy approach that couples wastewater treatment with carbon capture.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"5 9","pages":"2248–2259"},"PeriodicalIF":6.7000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.5c00172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Microalgae, particularly Chlorella vulgaris (CV), have gained increasing attention for their role in bioremediation and carbon sequestration due to their high photosynthetic efficiency, rapid biomass production, and ability to mitigate environmental contaminants. This study investigates the potential of an engineered nanoenabled microalgal system to enhance the simultaneous degradation of 2-nitroaniline (2-NA), a persistent nitroaromatic pollutant, and carbon sequestration under the influence of titanium dioxide nanoparticles (TiO2 NPs). The experimental approach assessed the effects of TiO2 NPs on CV growth kinetics, photosynthetic pigment synthesis, and CO2 fixation rates while analyzing the degradation efficiency of 2-NA. Results revealed that 20 mg L–1 TiO2 NPs optimized algal growth and photosynthetic activity, leading to a 37.4% increase in biomass productivity and enhanced CO2 sequestration rates compared to control. Extensive characterization including Raman and Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) confirmed TiO2 NP interactions with algal cellular components, demonstrating maintained structural integrity and biocompatibility. However, coexposure to 2-NA induced oxidative stress, evidenced by significant upregulation of catalase (CAT) and superoxide dismutase (SOD) activities, indicating a defensive response. The TiO2-integrated CV system demonstrated a 59.8% degradation efficiency of 2-NA at 10 mg L–1, surpassing biological degradation alone (39%). These findings underscore the dual benefits of integrating nanotechnology with microalgal systems for environmental remediation, offering a circular bioeconomy approach that couples wastewater treatment with carbon capture.

Abstract Image

纳米微藻系统对2-硝基苯胺修复和碳固存的研究
微藻,特别是小球藻(Chlorella vulgaris, CV)由于其高光合效率、快速生物量生产和减轻环境污染物的能力,在生物修复和碳封存方面的作用越来越受到人们的关注。本研究探讨了一种工程纳米微藻系统在二氧化钛纳米颗粒(TiO2 NPs)影响下增强2-硝基苯胺(2-NA)(一种持久性硝基芳香污染物)的同时降解和碳固存的潜力。实验方法评估了TiO2 NPs对CV生长动力学、光合色素合成和CO2固定速率的影响,同时分析了2-NA的降解效率。结果表明,与对照相比,20 mg L-1 TiO2 NPs优化了藻类的生长和光合活性,生物量生产力提高了37.4%,CO2固存率提高了37.4%。包括拉曼和傅里叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)在内的广泛表征证实了TiO2 NP与藻类细胞成分的相互作用,显示出保持的结构完整性和生物相容性。然而,共暴露于2-NA诱导氧化应激,过氧化氢酶(CAT)和超氧化物歧化酶(SOD)活性显著上调,表明防御反应。在10 mg L-1浓度下,tio2集成CV系统对2-NA的降解效率为59.8%,超过了单独生物降解(39%)。这些发现强调了将纳米技术与微藻系统结合起来用于环境修复的双重好处,提供了一种将废水处理与碳捕获结合起来的循环生物经济方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS ES&T engineering
ACS ES&T engineering ENGINEERING, ENVIRONMENTAL-
CiteScore
8.50
自引率
0.00%
发文量
0
期刊介绍: ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources. The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope. Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信