2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)最新文献

筛选
英文 中文
Biomimetic Barbed Microneedles for Highly Robust Tissue Anchoring 用于高强度组织锚定的仿生倒刺微针
2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056127
Sanwei Liu, Sangwook Chu, George E. Banis, L. Beardslee, R. Ghodssi
{"title":"Biomimetic Barbed Microneedles for Highly Robust Tissue Anchoring","authors":"Sanwei Liu, Sangwook Chu, George E. Banis, L. Beardslee, R. Ghodssi","doi":"10.1109/MEMS46641.2020.9056127","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056127","url":null,"abstract":"We present a bioinspired tissue-anchoring technology enabled via direct laser writing (DLW). 3-D printed barbed microneedles, mimicking the parasitic spiny-headed worm, display excellent structural fidelity/resolution and demonstrate −0.6 mN penetration force and 25 mN pull-out force when characterized on porcine small intestine tissue. Compared to the state-of-the-art barbed microneedles, the results indicate a significant advancement with approximately two orders of magnitude lower penetration force and over ten-fold higher pull-out/penetration ratio (PPR). The ease of tissue penetration and strength of attachment characteristics allow a more passive anchoring mechanism, with lower actuation and power requirements, for use in minimally invasive gastrointestinal (GI) resident devices.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"15 1","pages":"885-888"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87814971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Precise Fabrication of Gap-Tunable Nanoantennas for Plasmon-Enhanced Spectroscopy and Biosensing 用于等离子体增强光谱和生物传感的间隙可调谐纳米天线的精密制造
2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056322
Yun Huang, Zhuojie Chen, Shengxiao Jin, Jia Zhu, Bocheng Yu, Wengang Wu, R. Zhu, Jun Xu
{"title":"Precise Fabrication of Gap-Tunable Nanoantennas for Plasmon-Enhanced Spectroscopy and Biosensing","authors":"Yun Huang, Zhuojie Chen, Shengxiao Jin, Jia Zhu, Bocheng Yu, Wengang Wu, R. Zhu, Jun Xu","doi":"10.1109/MEMS46641.2020.9056322","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056322","url":null,"abstract":"This paper reports an arrayed nanometer precision gap-tunable bowtie nanoantennas fabricated by focused helium ion beam (HIB) milling. Plasmonic resonance is excited and tightly localized inside the nanogaps of the bowtie nanoantennas. Both numerical simulations and cathodoluminescence (CL) measurements manifest that the plasmon coupling resonance is significantly enhanced by decreasing the nanoantennas' gap width down to sub-10 nm scale. The stronger plasmon resonance also leads to a remarkable improvement of the spectral sensitivity to the surrounding media changes, which can be used to detect streptavidin with the concentration down to 100 ng/mL by simply monitoring the spectral shift.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"99 1","pages":"1179-1182"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85784321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Micro Pump Using Magnetic Artificial Cilia with Metachronal Wave 超向波磁性人工纤毛微泵的研制
2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056137
Hayato Shinoda, F. Tsumori
{"title":"Development of Micro Pump Using Magnetic Artificial Cilia with Metachronal Wave","authors":"Hayato Shinoda, F. Tsumori","doi":"10.1109/MEMS46641.2020.9056137","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056137","url":null,"abstract":"Our study aims to realize artificial cilia with metachronal wave and to apply them to a micro pump. Metachronal wave is a typical motion observed in natural cilia motion of living organisms. To clarify the characteristics of fluid transport by metachronal waves, we fabricated two modes of artificial cilia that form symplectic and antiplectic metachronal waves, and drove them in silicone oil. We used particle imaging velocimetry (PIV) to visualize the flows generated by these metachronal waves. This is the first time that these two types of metachronal waves were generated in artificial cilia.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"24 1","pages":"497-500"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86601534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
MEMS 2020 Author Index MEMS 2020作者索引
2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) Pub Date : 2020-01-01 DOI: 10.1109/mems46641.2020.9056179
{"title":"MEMS 2020 Author Index","authors":"","doi":"10.1109/mems46641.2020.9056179","DOIUrl":"https://doi.org/10.1109/mems46641.2020.9056179","url":null,"abstract":"","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87384574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ZnO-on-Diamond Resonators with Notched Thin-Film Piezoelectric Interdigital Transducer for Enhanced Signal-to-Noise Ratio and Feedthrough Suppression 用于提高信噪比和馈通抑制的带缺口薄膜压电数字间换能器的zno -金刚石谐振器
2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056260
Xu Han, Di Lan, Jing Wang
{"title":"ZnO-on-Diamond Resonators with Notched Thin-Film Piezoelectric Interdigital Transducer for Enhanced Signal-to-Noise Ratio and Feedthrough Suppression","authors":"Xu Han, Di Lan, Jing Wang","doi":"10.1109/MEMS46641.2020.9056260","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056260","url":null,"abstract":"This paper presents an innovative and convenient postprocessing methodology to improve the signal-to-noise ratio (SNR) by 3 dB or more than that of the original two-port piezoelectric MEMS resonator by introducing notched air cavities in the thin-film piezo-transducer layer between interdigital transducer (IDT) electrodes. Meanwhile, this strategy also effectively lowers the broadband feedthrough levels by more than 10 dB by substituting piezoelectric layer with the air cavities in the notched regions. This postprocessing technique also does not negatively impact the electromechanical coupling coefficients (signal strength) or the quality factors of the MEMS resonators. In addition, several spurious modes are adequately suppressed because of the modified distribution of electric fields and strain fields in the piezoelectric thin-film transducer adjacent to IDT electrodes. The equivalent circuit models that combine the motional current signal and the electronic feedthrough parasitics, while considering the notched IDT transducer design, have been developed and verified that match well with the measured frequency characteristics.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"19 1","pages":"1289-1291"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78914098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sandwich Structured Flexible Thermal Shear Stress Sensor with Improved Performance 改进性能的三明治结构柔性热剪切应力传感器
2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056242
Baoyun Sun, Wei Gao, Pengbin Wang, Run-Bo Chen, Jian Luo, Jinjun Deng, W. Yuan, B. Ma
{"title":"Sandwich Structured Flexible Thermal Shear Stress Sensor with Improved Performance","authors":"Baoyun Sun, Wei Gao, Pengbin Wang, Run-Bo Chen, Jian Luo, Jinjun Deng, W. Yuan, B. Ma","doi":"10.1109/MEMS46641.2020.9056242","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056242","url":null,"abstract":"We present a micro flexible thermal shear stress sensor with sandwich structure for enhanced static sensitivity and dynamic response performance. This sandwich structure consists of a guard-heater just underneath the thermistor and electrically isolated by a Parylene C film. The working temperature of the guard-heater is identical with the thermistor to eliminate unwanted heat conduction from the thermistor to the substrate. Compared with thermistor working individually, the results of shear stress calibration test and step current characterization demonstrate a 47% increase in sensitivity and 50% reduction in time constant when the thermistor and guard-heater working simultaneously.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"39 1","pages":"653-656"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77694114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of Al-Based Superconducting High-Aspect Ratio TSVS for Quantum 3D Integration 用于量子三维集成的铝基超导高纵横比TSVS的制备
2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056165
J. Alfaro-Barrantes, M. Mastrangeli, D. Thoen, J. Bueno, J. Baselmans, P. Sarro
{"title":"Fabrication of Al-Based Superconducting High-Aspect Ratio TSVS for Quantum 3D Integration","authors":"J. Alfaro-Barrantes, M. Mastrangeli, D. Thoen, J. Bueno, J. Baselmans, P. Sarro","doi":"10.1109/MEMS46641.2020.9056165","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056165","url":null,"abstract":"We describe a microfabrication process that, thanks to a specifically tailored sidewall profile, enables for the first-time wafer-scale arrays of high-aspect ratio through-silicon vias (TSVs) coated with DC-sputtered Aluminum, achieving at once superconducting and CMOS-compatible 3D interconnects. Void-free conformal coating of up to $500 mumathrm{m}$-deep and $50 mumathrm{m}$-wide vias with a mere $2 mumathrm{m}$-thick layer of Al, a widely available metal in for IC manufacturing, was demonstrated. Single-via electric resistance as low as $468 mathrm{m}Omega$ at room temperature and superconductivity at 1.25 K were measured by a cross-bridge Kelvin resistor structure. This work establishes the fabrication of functional superconducting interposers suitable for 3D integration of high-density silicon-based quantum computing architectures.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"25 1","pages":"932-935"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83564065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Magnetic-Polymer-Based Passive Pressure Sensor Realized with a Foldable Parylene Substrate 用可折叠聚苯二烯衬底实现的磁性聚合物无源压力传感器
2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056440
Yun-Chih Lin, Y. Yang
{"title":"A Magnetic-Polymer-Based Passive Pressure Sensor Realized with a Foldable Parylene Substrate","authors":"Yun-Chih Lin, Y. Yang","doi":"10.1109/MEMS46641.2020.9056440","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056440","url":null,"abstract":"In this work, we propose a wireless passive pressure sensor, which is designed for monitoring cardiovascular pressure. The device consists of an LC tank and a magnetic polymer film with tapered microstructures. The LC tank includes a micromachined parallel-plate capacitor and an inductor coil connected in series. External pressure applied on the magnetic polymer film changes the LC tank's resonant frequency, which can be wirelessly retrieved using the phase-dip technique. The corresponding relationship between the resonant frequency and the applied pressure is presented. The pressure sensitivity of the proposed device is about 0.113 MHz/mmHg in the pressure range of 0-300 mmHg. The measured results also showed that the proposed sensing mechanism has a wide range of linearity of pressure sensing.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"13 1","pages":"669-672"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77116799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A High Dynamic Range AFM Probe with Collocated Piezoelectric Transducer Pairs 一种高动态范围的压电传感器对AFM探针
2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056447
M. Mahdavi, M. B. Coskun, Hazhir Mahmoodi Nasrabadi, S. Moheimani
{"title":"A High Dynamic Range AFM Probe with Collocated Piezoelectric Transducer Pairs","authors":"M. Mahdavi, M. B. Coskun, Hazhir Mahmoodi Nasrabadi, S. Moheimani","doi":"10.1109/MEMS46641.2020.9056447","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056447","url":null,"abstract":"A new class of piezoelectric cantilevers is presented for dynamic mode atomic force microscopy (AFM). Twin isolated, two-layer piezoelectric stack transducers are microfabricated side-by-side on a Si AFM probe. The top transducer on one pair is used to actuate the probe into oscillation. The remaining pair of transducers are used to differentially sense the cantilever deflection. This probe exhibits a negligible electrical feedthrough, which is a key issue with piezoelectric cantilevers. The piezoelectric sensors capture the full dynamics of the resonating cantilever at the first mode. Obtaining a high dynamic range with this differential sensing pair at this mode makes the cantilever a suitable candidate for high-resolution dynamic AFM imaging. It is worth mentioning that stacking the two layer pair of transducers enables optimal use of available surface area on small microcantilevers.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"6 41","pages":"50-53"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91508419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
A Non-Reciprocal Surface Acoustic Wave Filter Based on Asymmetrical Delay Lines and Parametric Interactions 基于非对称延迟线和参数相互作用的非互易表面声波滤波器
2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056343
José A. Bahamonde, I. Kymissis
{"title":"A Non-Reciprocal Surface Acoustic Wave Filter Based on Asymmetrical Delay Lines and Parametric Interactions","authors":"José A. Bahamonde, I. Kymissis","doi":"10.1109/MEMS46641.2020.9056343","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056343","url":null,"abstract":"In this work, we demonstrate a novel topology combining the large delays available in acoustic devices with parametric amplification to obtain non-reciprocal propagation of forward and reverse RF signal. The device can operate in a phase-coherent degenerate mode for an optimum gain of 12.7dB and an isolation of 18.3dB. In a degenerate phase incoherent mode, the device is capable of 3.1 dB of gain and 5.2 dB of isolation.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"19 1","pages":"1250-1253"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87316722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信