2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)最新文献

筛选
英文 中文
Mechanical Tuning of Magnetic Anisotropy 磁各向异性的机械调谐
2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056417
M. M. Torunbalci, S. Bhave
{"title":"Mechanical Tuning of Magnetic Anisotropy","authors":"M. M. Torunbalci, S. Bhave","doi":"10.1109/MEMS46641.2020.9056417","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056417","url":null,"abstract":"This paper demonstrates piezo-mechanical manipulation of magnetic anisotropy in a thin-film CoFeB ferromagnet (FM) via magnetostriction effect. A 20 nm thick CoFeB resistor is fabricated at the base of an AlN cantilever and its magnetization change is detected by measuring anisotropic magnetoresistance (AMR). The uniaxial strain induced in the CoFeB strip by cantilever bending exhibits a 22% change in AMR and rotates the magnetic anisotropy by 20°.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"120 1","pages":"1145-1148"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87721431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D Microfluidic Device for Perfusion Culture of Spheroids 球体灌注培养的三维微流控装置
2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056442
K. Nishimura, Minghao Nie, S. Takeuchi
{"title":"3D Microfluidic Device for Perfusion Culture of Spheroids","authors":"K. Nishimura, Minghao Nie, S. Takeuchi","doi":"10.1109/MEMS46641.2020.9056442","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056442","url":null,"abstract":"We propose a 3D spheroid trapping device featured with a gel formed in the proximity with the spheroids to facilitate spheroid adhesion and perfusion. The device is composed of an upper channel to introduce pre-gel solutions, a bridge region to form a gel and a lower channel to trap a spheroid and perfuse culture media. Due to surface-tension-assisted microfluidic functions, a gel is formed only in the bridge region. The gel performs as an anchoring scaffold for spheroids and enables media perfusion. As a result of spheroid culture, angiogenic vascular sprouts were formed and the sprouts had branched lumen structure. We believe this device will contribute widely to biomedical studies.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"75 1","pages":"998-1001"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85723707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Comprehensive Analysis and Control of Diffusioosmosis-Driven Ionic Transport Through Interconnected Nanoporous Membranes 纳米孔膜扩散渗透驱动离子传输的综合分析与控制
2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056409
Jongwan Lee, Kyunghun Lee, Cong Wang, Dogyeong Ha, Jungyul Park, Taesung Kim
{"title":"Comprehensive Analysis and Control of Diffusioosmosis-Driven Ionic Transport Through Interconnected Nanoporous Membranes","authors":"Jongwan Lee, Kyunghun Lee, Cong Wang, Dogyeong Ha, Jungyul Park, Taesung Kim","doi":"10.1109/MEMS46641.2020.9056409","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056409","url":null,"abstract":"We introduce a micro-/nanofluidic platform enabling the comprehensive analysis and control of diffusioosmosis (DO)-driven ionic transport through a nanochannel network. The nanochannel network is fabricated in the microfluidic channel by forming a membrane via the self-assembly of nanoparticles (i.e., self-assembled particle membrane, SAPM). This fabrication method allows to use various and different nanoparticles so that it is possible to modulate the material properties of the nanochannel network. Using the platform, we analyze the thermal effect on DO-driven ionic transport with various concentrations of electrolyte solutions with the aid of a temperature switching device (TSD).","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"18 1","pages":"1134-1136"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86007312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling and First Characterization of Broad-Spectrum Vibration Rejection of Frequency Modulated Gyroscopes 调频陀螺仪广谱抗振的建模与初步表征
2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056265
M. Bestetti, V. Zega, G. Langfelder
{"title":"Modeling and First Characterization of Broad-Spectrum Vibration Rejection of Frequency Modulated Gyroscopes","authors":"M. Bestetti, V. Zega, G. Langfelder","doi":"10.1109/MEMS46641.2020.9056265","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056265","url":null,"abstract":"The work presents a detailed modeling and the first-ever characterization of a frequency modulated (FM) yaw gyroscope in presence of vibrations from low frequency (30 Hz), through the main modes, and up to 40 kHz. The gyroscope two in-plane axes (around 25 kHz) are operated under a Lissajous trajectory (70 Hz period) by an integrated circuit (IC) including oscillators, frequency digitization, and digital demodulation stages. In presence of $2-g_{pk-pk}$ vibrations, no effects are visible across the spectrum apart from the region including the modes. In this range, as predicted by theory, for each axis no effect is observed for accelerations at the axis resonance (< 0.1 dps/g), but a huge effect (tens of dps/g) is visible for accelerations at an offset frequency from resonance corresponding to the mode split.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"23 1","pages":"259-262"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75072469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Fiber-Si3N4 Composite Nanoforest with High 7.6 to $11.6 mumathrm{m}$ Absorption for MEMS Infrared Sensors 用于MEMS红外传感器的高7.6 ~ 11.6 mu数学{m}$吸收的光纤- si3n4复合纳米森林
2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056198
Chenchen Zhang, H. Mao, Meng Shi, J. Xiong, Kewen Long, Dapeng Chen
{"title":"A Fiber-Si3N4 Composite Nanoforest with High 7.6 to $11.6 mumathrm{m}$ Absorption for MEMS Infrared Sensors","authors":"Chenchen Zhang, H. Mao, Meng Shi, J. Xiong, Kewen Long, Dapeng Chen","doi":"10.1109/MEMS46641.2020.9056198","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056198","url":null,"abstract":"In this work, a fiber-Si3N4 composite nanoforest with high absorption in 7.6 to $11.6 mu mathrm{m}$ wavelength range is presented. Especially, when thickness of a Si3N4 coating reaches 300 nm, the nanoforest can achieve an average absorption as high as 88.12%. Such a composite nanoforest is fabricated based on an extremely simple process, including spin-coating and plasma treating of a polyimide layer, followed by deposition of a Si3N4 film. The process is fully compatible with conventional micromachining, thus the nanoforest can be integrated onto MEMS infrared (IR) sensors as an additional absorber. Furthermore, with such a composite nanoforest-based absorber, the IR sensors are expected to achieve higher performance, especially for human IR sensing.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"10 1","pages":"949-952"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74473396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-Rangeultrasound Wake-Up Receiver with a Piezoelectric Nanoscale Ultrasound Transducer (pNUT) 带压电纳米级超声换能器的远程超声唤醒接收器
2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056287
Pietro Simeoni, Matteo Castellani, G. Piazza
{"title":"Long-Rangeultrasound Wake-Up Receiver with a Piezoelectric Nanoscale Ultrasound Transducer (pNUT)","authors":"Pietro Simeoni, Matteo Castellani, G. Piazza","doi":"10.1109/MEMS46641.2020.9056287","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056287","url":null,"abstract":"We report on the first implementation of a long-range wake-up receiver (WuRx) enabled by an aggressively scaled 100 nm thick aluminum nitride transducer that occupies an area of only $100 mu mathrm{m} times 100 mu mathrm{m}$. This piezoelectric Nanoscale Ultrasound Transducer (pNUT) offers the same sensitivity and characteristic impedance of its microscale counterparts but enables “dust-like” WuRx because of its dramatically reduced size. We validate this concept by synthesizing a WuRx using a pNUT and off-the-shelf electronic components forming a voltage amplifier, an envelope detector and a comparator (Fig. 1). We demonstrate robust data transfer over a range of 0.5 m when operating with a 40 kHz carrier signal modulated at 250Hz. Based on these measurements we extrapolate the device performance at resonance to show that communication over> 10m is possible without increasing the WuRx area.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"1 1","pages":"849-852"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78240346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Concentric, Mems-Based Optoelectromechanical Pacer for Multimodal Cardiac Excitation 同心mems光电起搏器用于多模态心脏兴奋
2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056115
Tobias Weber, C. Zgierski-Johnston, Eric Klein, S. Ayub, P. Kohl, O. Paul, P. Ruther
{"title":"Concentric, Mems-Based Optoelectromechanical Pacer for Multimodal Cardiac Excitation","authors":"Tobias Weber, C. Zgierski-Johnston, Eric Klein, S. Ayub, P. Kohl, O. Paul, P. Ruther","doi":"10.1109/MEMS46641.2020.9056115","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056115","url":null,"abstract":"This paper reports on the fabrication, assembly, characterization and validation of a novel opto-electrical cardiac stimulator designed to augment a mechanical pacing device. The integration of miniaturized electrodes and blue light-emitting diode (LED) chips on the pacer tip with a diameter of 1 mm enables the application of multimodal stimuli in one location on the surface of isolated murine hearts. The opto-electrical stimulator is based on two separate polyimide (PI) substrates each with a thickness of $10 mu mathrm{m}$ combined into a functional unit based on dedicated assembly and encapsulation processes using silicone rubber. The experimental validation in isolated, whole hearts compares electrical, optical and mechanical stimuli exerted at frequencies of up to 8 Hz on Langen-dorff-perfused hearts expressing channelrhodopsin-2. The integrated iridium oxide electrodes implemented above the LED chips enable simultaneous electrical recordings of local cardiac electrical activity.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"6 1","pages":"361-364"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80162608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Massive Integration of Light Driving Gel Actuator for Single Cell Manipulation 用于单细胞操作的光驱动凝胶驱动器的大规模集成
2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056395
Yuha Koike, Hiroki Wada, Y. Yokoyama, T. Hayakawa
{"title":"Massive Integration of Light Driving Gel Actuator for Single Cell Manipulation","authors":"Yuha Koike, Hiroki Wada, Y. Yokoyama, T. Hayakawa","doi":"10.1109/MEMS46641.2020.9056395","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056395","url":null,"abstract":"We propose drive method of on-chip gel actuator using light irradiation for massive integration of gel actuators. The gel actuator is made of temperature responsive gel and patterned on a chip with light absorbing material. Thus, it can be driven by irradiation of light to control its temperature. By using this method, we can selectively drive an actuator among massively integrated actuators by irradiating patterned light and it can be applied to high-throughput cell manipulations. In this study, we demonstrated an example of cell manipulation by using this method. We made a flow channel for cell transportation by irradiating light. We succeeded in making straight channel by irradiating actuators with sheet laser. In this channel, we observed that motile cells moved and we succeeded in trapping the motile cells by turning off the laser and swelling the actuators.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"41 1","pages":"1094-1097"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81737390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MEMS 2020 Keyword Index MEMS 2020关键词索引
2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) Pub Date : 2020-01-01 DOI: 10.1109/mems46641.2020.9056329
{"title":"MEMS 2020 Keyword Index","authors":"","doi":"10.1109/mems46641.2020.9056329","DOIUrl":"https://doi.org/10.1109/mems46641.2020.9056329","url":null,"abstract":"","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81945719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-Cleaning Drop Free Glass Operated by Acoustic Atomization/Oscillation for Autonomous Driving and IoT Technology 用于自动驾驶和物联网技术的声学雾化/振荡自清洁无滴玻璃
2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056111
Seungmin Lee, Youngbin Hyun, Kang-Young Lee, Jeongmin Lee, S. Chung
{"title":"Self-Cleaning Drop Free Glass Operated by Acoustic Atomization/Oscillation for Autonomous Driving and IoT Technology","authors":"Seungmin Lee, Youngbin Hyun, Kang-Young Lee, Jeongmin Lee, S. Chung","doi":"10.1109/MEMS46641.2020.9056111","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056111","url":null,"abstract":"This paper presents self-cleaning drop free glass (DFG) through acoustic atomization and oscillation for autonomous driving and IoT technology. The behavior of an oscillating droplet actuated by a ring-piezoactuator is investigated by high-speed images in a wide range of acoustic amplitudes and frequencies. The atomization and oscillation of a droplet are separately tested using prepared DFG samples. The droplet atomization remains tiny satellite droplets on the surface of the DFG after the operation, while the droplet oscillation clearly removes the droplet from the surface. The DFG can be used to efficiently clean water and viscous droplets generated on the surface of various optical sensors.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"3 1","pages":"36-37"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82466971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信