Kaizhen Han, Ying Wu, Y. Huang, Shengqiang Xu, Annie Kumar, E. Kong, Yuye Kang, Jishen Zhang, Chengkuan Wang, Haiwen Xu, Chen Sun, X. Gong
{"title":"First Demonstration of Complementary FinFETs and Tunneling FinFETs Co-Integrated on a 200 mm GeSnOI Substrate: A Pathway towards Future Hybrid Nano-electronics Systems","authors":"Kaizhen Han, Ying Wu, Y. Huang, Shengqiang Xu, Annie Kumar, E. Kong, Yuye Kang, Jishen Zhang, Chengkuan Wang, Haiwen Xu, Chen Sun, X. Gong","doi":"10.23919/VLSIT.2019.8776539","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776539","url":null,"abstract":"For the first time, complementary FinFETs and complementary tunneling FinFETs (TFFETs), with fin width $(W_{Fin})$ of 20 nm and fin height $(H_{{fin}})$ of 50 nm, were co-integrated on the same substrate, enabled by the formation of high-quality GeSn-on-insulator (GeSnOI) substrate with 200 mm wafer size. Decent electrical characteristics were realized for both GeSn n-and p-channel FinFETs and TFFETs. We also performed simulation studies to show the promise of the GeSnOI platform, which is not only able to suppress the off-state leakage current and improve the $I_{on}/I_{off}$ ratio of tunneling FETs, but can also provide the powerful flexibility of using a back bias to achieve superior electrical characteristics beyond the benefits of incorporating Sn into Ge.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"74 1","pages":"T182-T183"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86916863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Dutta, A. Saha, P. Panda, W. Chakraborty, J. Gomez, A. Khanna, S. Gupta, K. Roy, S. Datta
{"title":"Biologically Plausible Ferroelectric Quasi-Leaky Integrate and Fire Neuron","authors":"S. Dutta, A. Saha, P. Panda, W. Chakraborty, J. Gomez, A. Khanna, S. Gupta, K. Roy, S. Datta","doi":"10.23919/VLSIT.2019.8776487","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776487","url":null,"abstract":"Biologically plausible mechanism like homeostasis compliments Hebbian learning to allow unsupervised learning in spiking neural networks [1]. In this work, we propose a novel ferroelectric-based quasi-LIF neuron that induces intrinsic homeostasis. We experimentally characterize and perform phase-field simulations to delineate the non-trivial transient polarization relaxation mechanism associated with multi-domain interaction in poly-crystalline ferroelectric, such as Zr doped $text{HfO}_{2}$, that underlines the Q-LIF behavior. Network level simulations with the Q-LIF neuron model exhibits a 2.3x reduction in firing rate compared to traditional LIF neuron while maintaining iso-accuracy of 84-85% across varying network sizes. Such an energy-efficient hardware for spiking neuron can enable ultra-low power data processing in energy constrained environments suitable for edge-intelligence.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"6 1","pages":"T140-T141"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88010137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ming-Hung Wu, Ming-Chun Hong, Chih-Cheng Chang, P. Sahu, Jeng-Hua Wei, Heng-Yuan Lee, Shyh-Shyuan Shcu, T. Hou
{"title":"Extremely Compact Integrate-and-Fire STT-MRAM Neuron: A Pathway toward All-Spin Artificial Deep Neural Network","authors":"Ming-Hung Wu, Ming-Chun Hong, Chih-Cheng Chang, P. Sahu, Jeng-Hua Wei, Heng-Yuan Lee, Shyh-Shyuan Shcu, T. Hou","doi":"10.23919/VLSIT.2019.8776569","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776569","url":null,"abstract":"This work reports the complete framework from device to architecture for deep learning acceleration in an all-spin artificial neural network (ANN) built by highly manufacturable STT-MRAM technology. The most compact analog integrate-and-fire neuron reported to date is developed based on the back-hopping oscillation in magnetic tunnel junctions. This novel device is unique because it performs numerous essential neural functions simultaneously, including current integration, voltage spike generation, state reset, and 4-bit precision. The device itself is also a stochastic binary synapse, and thus eases the implementation of the compact all-spin ANN with high accuracy for online training.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"15 1","pages":"T34-T35"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77614543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Schuddinck, O. Zografos, P. Weckx, P. Matagne, S. Sarkar, Y. Sherazi, R. Baert, D. Jang, D. Yakimets, A. Gupta, B. Parvais, J. Ryckaert, D. Verkest, A. Mocuta
{"title":"Device-, Circuit- & Block-level evaluation of CFET in a 4 track library","authors":"P. Schuddinck, O. Zografos, P. Weckx, P. Matagne, S. Sarkar, Y. Sherazi, R. Baert, D. Jang, D. Yakimets, A. Gupta, B. Parvais, J. Ryckaert, D. Verkest, A. Mocuta","doi":"10.23919/VLSIT.2019.8776513","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776513","url":null,"abstract":"The structure of the complementary FET (CFET) with NMOS stacked on top of PMOS, inherently yields standard cells and SRAM cells with 25% smaller layout area, 25% higher pin density and 2x higher routing flexibility than FinFET with same overall active footprint. Moreover, our work, based on advanced modelling, demonstrates that 4 track CFET can match and even outperform 5 track FinFET; without the need to lower S/D contact resistivity down to $5text{e}-10Omega.text{cm}^{2}$ or to elevate the channel stress up to 2GPa. All gains in power-performance-area at circuit-level are maintained at block-level, making 4 track CFET a suitable candidate for N3 & N2 technologies. Keywords: CFET, scaling, S/D engineering, Pi-gate.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"38 1","pages":"T204-T205"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91038183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Future of Advanced Package Solutions","authors":"Dae-woo Kim, Taejoo Hwang","doi":"10.23919/VLSIT.2019.8776536","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776536","url":null,"abstract":"As the 4th industry revolution emerges into the semiconductor industry, high computing power and high data bandwidth are required for semiconductor devices. These demands lead to the adaption of the advanced packaging technology. For mobile application, fan-out technologies are used for smart phones due to small form factors and thermal performances. For server applications, 2.5D and 3D technologies are employed for cloud and artificial intelligence in terms of high memory bandwidth and a big die. However, there are two significant issues to resolve for advanced packaging. One is a thermal issue and the other is an electrical issue. Novel thermal materials and package structures are expected to improve the thermal performances. Redistribution substrate and through silicon via will reduce electrical loss for high speed signals. In this paper, we will investigate how the packaging technologies evolve in the future.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"33 1","pages":"T48-T49"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74834144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z. Chai, W. Zhang, R. Degraeve, S. Clima, F. Hatem, J. F. Zhang, P. Freitas, J. Marsland, A. Fantini, D. Garbin, L. Goux, G. Kar
{"title":"Evidence of filamentary switching and relaxation mechanisms in GexSe1-xOTS selectors","authors":"Z. Chai, W. Zhang, R. Degraeve, S. Clima, F. Hatem, J. F. Zhang, P. Freitas, J. Marsland, A. Fantini, D. Garbin, L. Goux, G. Kar","doi":"10.23919/VLSIT.2019.8776566","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776566","url":null,"abstract":"Comprehensive experimental and simulation evidence of the filamentary-type switching and Vth relaxation mechanism associated with defect charging/discharging in GexSe1-xovonic threshold switching (OTS) selector is reported. For the first time, area independence of conduction current at both on/off states, Weibull distribution of time-to-switch-on/off (t-on/off), Vth relaxation and its dependence on time, bias and temperature, which is in good agreement with our first-principles simulations in density functional theory, provide strong support for filament modulation by defect delocalzation/localization that is responsible for volatile switching.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"14 1","pages":"T238-T239"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78769415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Arimura, D. Cott, G. Boccardi, R. Loo, K. Wostyn, S. Brus, E. Capogreco, A. Opdebeeck, L. Witters, T. Conard, S. Suhard, D. V. van Dorp, K. Kenis, L. Ragnarsson, J. Mitard, F. Holsteyns, V. De Heyn, D. Mocuta, N. Collaert, N. Horiguchi
{"title":"A record GmSAT/SSSAT and PBTI reliability in Si-passivated Ge nFinFETs by improved gate stack surface preparation","authors":"H. Arimura, D. Cott, G. Boccardi, R. Loo, K. Wostyn, S. Brus, E. Capogreco, A. Opdebeeck, L. Witters, T. Conard, S. Suhard, D. V. van Dorp, K. Kenis, L. Ragnarsson, J. Mitard, F. Holsteyns, V. De Heyn, D. Mocuta, N. Collaert, N. Horiguchi","doi":"10.23919/VLSIT.2019.8776535","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776535","url":null,"abstract":"We have demonstrated Ge nFinFETs with a record high $text{G}_{text{mSA}Gamma}/text{SS}_{text{SAT}}$ and PBTI reliability by improving the RMG high-k last process. The SiO2 dummy gate oxide (DGO) deposition and removal processes have been identified as knobs to improve electron mobility and PBTI reliability even with a nominally identical Si-passivated Ge gate stack. Surface oxidation of Ge channel during the DGO deposition is considered to impact the final gate stack. By suppressing the Ge channel surface oxidation, increasing mobility with decreasing fin width is obtained, whereas PBTI reliability, $text{D}_{text{IT}}$ of scaled fin as well as high-field mobility are improved by extending the DGO in-situ clean process, resulting in the record $text{Gm}_{text{SAT}}/text{SS}_{text{SAT}}$ of 5.4 at 73 nm Lg.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"78 1","pages":"T92-T93"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83932802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Xie, Chanro Park, R. Conti, R. Robison, Huimei Zhou, I. Saraf, A. Carr, S. Fan, K. Ryan, M. Belyansky, S. Pancharatnam, A. Young, Junli Wang, A. Greene, K. Cheng, Juntao Li, R. Conte, Hao Tang, K. Choi, H. Amanapu, B. Peethala, R. Muthinti, M. Raymond, C. Prindle, Yong Liang, S. Tsai, V. Kamineni, A. Labonté, N. Cave, D. Gupta, V. Basker, N. Loubet, D. Guo, B. Haran, A. Knorr, H. Bu
{"title":"Self-Allancd Gate Contact (SAGC) for CMOS technology scaling beyond 7nm","authors":"R. Xie, Chanro Park, R. Conti, R. Robison, Huimei Zhou, I. Saraf, A. Carr, S. Fan, K. Ryan, M. Belyansky, S. Pancharatnam, A. Young, Junli Wang, A. Greene, K. Cheng, Juntao Li, R. Conte, Hao Tang, K. Choi, H. Amanapu, B. Peethala, R. Muthinti, M. Raymond, C. Prindle, Yong Liang, S. Tsai, V. Kamineni, A. Labonté, N. Cave, D. Gupta, V. Basker, N. Loubet, D. Guo, B. Haran, A. Knorr, H. Bu","doi":"10.23919/VLSIT.2019.8776492","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776492","url":null,"abstract":"We demonstrate a novel self-aligned gate contact (SAGC) scheme with conventional oxide/nitride materials that allows superior process integration for scaling while simplifying the SRAM cross-couple wiring. We show that the key feature to avoid both gate-contact (CB) to source-drain local interconnect (LI) shorts and the LI-contact (CA) to gate shorts is the shape of the LI cap. A trapezoid-shaped oxide (SiO2) LI cap with an appropriate taper angle eliminates shorting between the contacts in the gate and source-drain region. We further demonstrate that this oxide LI cap is fully compatible with Cobalt (Co) metallization with a novel selective tungsten (W) growth process. Additionally, this process enables the SRAM cross-couple (XC) in the same metallization level, eliminating the need for an upper level wiring and greatly simplifying routing in the SRAM cell.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"35 1","pages":"T148-T149"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81109102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chao-Ching Cheng, Yun-Yan Chung, Uing-Yang Li, Chao-Ting Lin, Chi-Feng Li, Jyun-Hong Chen, T. Lai, Kai-Shin Li, J. Shieh, S. Su, H. Chiang, Tzu-Chiang Chen, Lain‐Jong Li, H. P. Wong, C. Chien
{"title":"First demonstration of 40-nm channel length top-gate WS2 pFET using channel area-selective CVD growth directly on SiOx/Si substrate","authors":"Chao-Ching Cheng, Yun-Yan Chung, Uing-Yang Li, Chao-Ting Lin, Chi-Feng Li, Jyun-Hong Chen, T. Lai, Kai-Shin Li, J. Shieh, S. Su, H. Chiang, Tzu-Chiang Chen, Lain‐Jong Li, H. P. Wong, C. Chien","doi":"10.23919/VLSIT.2019.8776498","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776498","url":null,"abstract":"Area-selective channel material growth for 2D transistors is more desirable for volume manufacturing than exfoliation or wet/dry transfer after large area growth. We demonstrate the first top-gate WS2 p-channel field-effect transistors (p-FETs) fabricated on SiOx/Si substrate using channel area-selective CVD growth. Smooth and uniform WS2 comprising approximately 6 layers was formed by area-selective CVD growth in which a patterned tungsten-source/drain served as the seed for WS2 growth. For a 40 nm gate length transistor, the device has impressive electrical characteristics: on/off ratio of ~106, a S.S. of ~97 mV/dec., and nearly zero DIBL.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"54 1","pages":"T244-T245"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84732429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Monolithic Three-Dimensional Imaging System: Carbon Nanotube Computing Circuitry Integrated Directly Over Silicon Imager","authors":"T. Srimani, G. Hills, C. Lau, M. Shulaker","doi":"10.23919/VLSIT.2019.8776514","DOIUrl":"https://doi.org/10.23919/VLSIT.2019.8776514","url":null,"abstract":"Here we show a hardware prototype of a monolithic three-dimensional (3D) imaging system that integrates computing layers directly in the back-end-of-line (BEOL) of a conventional silicon imager. Such systems can transform imager output from raw pixel data to highly processed information. To realize our imager, we fabricate 3 vertical circuit layers directly on top of each other: a bottom layer of silicon pixels followed by two layers of CMOS carbon nanotube FETs (CNFETs) (comprising 2,784 CNFETs) that perform in-situ edge detection in real-time, before storing data in memory. This approach promises to enable image classification systems with improved nrocessing latencies.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"33 1","pages":"T24-T25"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77817326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}