生物学上似是而非的铁电准漏积分与放电神经元

S. Dutta, A. Saha, P. Panda, W. Chakraborty, J. Gomez, A. Khanna, S. Gupta, K. Roy, S. Datta
{"title":"生物学上似是而非的铁电准漏积分与放电神经元","authors":"S. Dutta, A. Saha, P. Panda, W. Chakraborty, J. Gomez, A. Khanna, S. Gupta, K. Roy, S. Datta","doi":"10.23919/VLSIT.2019.8776487","DOIUrl":null,"url":null,"abstract":"Biologically plausible mechanism like homeostasis compliments Hebbian learning to allow unsupervised learning in spiking neural networks [1]. In this work, we propose a novel ferroelectric-based quasi-LIF neuron that induces intrinsic homeostasis. We experimentally characterize and perform phase-field simulations to delineate the non-trivial transient polarization relaxation mechanism associated with multi-domain interaction in poly-crystalline ferroelectric, such as Zr doped $\\text{HfO}_{2}$, that underlines the Q-LIF behavior. Network level simulations with the Q-LIF neuron model exhibits a 2.3x reduction in firing rate compared to traditional LIF neuron while maintaining iso-accuracy of 84-85% across varying network sizes. Such an energy-efficient hardware for spiking neuron can enable ultra-low power data processing in energy constrained environments suitable for edge-intelligence.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"6 1","pages":"T140-T141"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Biologically Plausible Ferroelectric Quasi-Leaky Integrate and Fire Neuron\",\"authors\":\"S. Dutta, A. Saha, P. Panda, W. Chakraborty, J. Gomez, A. Khanna, S. Gupta, K. Roy, S. Datta\",\"doi\":\"10.23919/VLSIT.2019.8776487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biologically plausible mechanism like homeostasis compliments Hebbian learning to allow unsupervised learning in spiking neural networks [1]. In this work, we propose a novel ferroelectric-based quasi-LIF neuron that induces intrinsic homeostasis. We experimentally characterize and perform phase-field simulations to delineate the non-trivial transient polarization relaxation mechanism associated with multi-domain interaction in poly-crystalline ferroelectric, such as Zr doped $\\\\text{HfO}_{2}$, that underlines the Q-LIF behavior. Network level simulations with the Q-LIF neuron model exhibits a 2.3x reduction in firing rate compared to traditional LIF neuron while maintaining iso-accuracy of 84-85% across varying network sizes. Such an energy-efficient hardware for spiking neuron can enable ultra-low power data processing in energy constrained environments suitable for edge-intelligence.\",\"PeriodicalId\":6752,\"journal\":{\"name\":\"2019 Symposium on VLSI Technology\",\"volume\":\"6 1\",\"pages\":\"T140-T141\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSIT.2019.8776487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

生物学上似是而非的机制,如内稳态,使赫比式学习得以在尖峰神经网络中实现无监督学习。在这项工作中,我们提出了一种新的基于铁电的准lif神经元,可以诱导内在稳态。我们通过实验表征并进行相场模拟来描述多晶铁电中与多畴相互作用相关的非平凡瞬态极化弛豫机制,例如Zr掺杂$\text{HfO}_{2}$,强调Q-LIF行为。使用Q-LIF神经元模型进行的网络级模拟显示,与传统的LIF神经元相比,放电率降低了2.3倍,同时在不同网络大小的情况下保持84-85%的等精度。这种高效能的尖峰神经元硬件可以在能量受限的环境中实现适合边缘智能的超低功耗数据处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biologically Plausible Ferroelectric Quasi-Leaky Integrate and Fire Neuron
Biologically plausible mechanism like homeostasis compliments Hebbian learning to allow unsupervised learning in spiking neural networks [1]. In this work, we propose a novel ferroelectric-based quasi-LIF neuron that induces intrinsic homeostasis. We experimentally characterize and perform phase-field simulations to delineate the non-trivial transient polarization relaxation mechanism associated with multi-domain interaction in poly-crystalline ferroelectric, such as Zr doped $\text{HfO}_{2}$, that underlines the Q-LIF behavior. Network level simulations with the Q-LIF neuron model exhibits a 2.3x reduction in firing rate compared to traditional LIF neuron while maintaining iso-accuracy of 84-85% across varying network sizes. Such an energy-efficient hardware for spiking neuron can enable ultra-low power data processing in energy constrained environments suitable for edge-intelligence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信