单片三维成像系统:碳纳米管计算电路直接集成在硅成像仪上

T. Srimani, G. Hills, C. Lau, M. Shulaker
{"title":"单片三维成像系统:碳纳米管计算电路直接集成在硅成像仪上","authors":"T. Srimani, G. Hills, C. Lau, M. Shulaker","doi":"10.23919/VLSIT.2019.8776514","DOIUrl":null,"url":null,"abstract":"Here we show a hardware prototype of a monolithic three-dimensional (3D) imaging system that integrates computing layers directly in the back-end-of-line (BEOL) of a conventional silicon imager. Such systems can transform imager output from raw pixel data to highly processed information. To realize our imager, we fabricate 3 vertical circuit layers directly on top of each other: a bottom layer of silicon pixels followed by two layers of CMOS carbon nanotube FETs (CNFETs) (comprising 2,784 CNFETs) that perform in-situ edge detection in real-time, before storing data in memory. This approach promises to enable image classification systems with improved nrocessing latencies.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"33 1","pages":"T24-T25"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Monolithic Three-Dimensional Imaging System: Carbon Nanotube Computing Circuitry Integrated Directly Over Silicon Imager\",\"authors\":\"T. Srimani, G. Hills, C. Lau, M. Shulaker\",\"doi\":\"10.23919/VLSIT.2019.8776514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here we show a hardware prototype of a monolithic three-dimensional (3D) imaging system that integrates computing layers directly in the back-end-of-line (BEOL) of a conventional silicon imager. Such systems can transform imager output from raw pixel data to highly processed information. To realize our imager, we fabricate 3 vertical circuit layers directly on top of each other: a bottom layer of silicon pixels followed by two layers of CMOS carbon nanotube FETs (CNFETs) (comprising 2,784 CNFETs) that perform in-situ edge detection in real-time, before storing data in memory. This approach promises to enable image classification systems with improved nrocessing latencies.\",\"PeriodicalId\":6752,\"journal\":{\"name\":\"2019 Symposium on VLSI Technology\",\"volume\":\"33 1\",\"pages\":\"T24-T25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSIT.2019.8776514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在这里,我们展示了一个单片三维(3D)成像系统的硬件原型,该系统将计算层直接集成在传统硅成像仪的后端(BEOL)中。这样的系统可以将成像仪输出从原始像素数据转换为高度处理的信息。为了实现我们的成像仪,我们直接在彼此的顶部制作了3个垂直电路层:底层是硅像素,然后是两层CMOS碳纳米管场效应管(cnfet)(包括2,784个cnfet),在将数据存储到存储器之前,它们可以实时进行原位边缘检测。这种方法有望使图像分类系统具有改进的处理延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monolithic Three-Dimensional Imaging System: Carbon Nanotube Computing Circuitry Integrated Directly Over Silicon Imager
Here we show a hardware prototype of a monolithic three-dimensional (3D) imaging system that integrates computing layers directly in the back-end-of-line (BEOL) of a conventional silicon imager. Such systems can transform imager output from raw pixel data to highly processed information. To realize our imager, we fabricate 3 vertical circuit layers directly on top of each other: a bottom layer of silicon pixels followed by two layers of CMOS carbon nanotube FETs (CNFETs) (comprising 2,784 CNFETs) that perform in-situ edge detection in real-time, before storing data in memory. This approach promises to enable image classification systems with improved nrocessing latencies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信