Mudasir Mahmood, Shahid Iqbal, Muhammad Jamshaid, Ambreen Kalsoom, Amal M. Al-Mohaimeed, Rashid Iqbal, Firdous Bibi, Qasim Raza, Mohamed Soliman Elshikh
{"title":"Efficient tetracycline removal from hospital wastewater using visible light active M-type lead hexaferrite/g-C3N4 composites","authors":"Mudasir Mahmood, Shahid Iqbal, Muhammad Jamshaid, Ambreen Kalsoom, Amal M. Al-Mohaimeed, Rashid Iqbal, Firdous Bibi, Qasim Raza, Mohamed Soliman Elshikh","doi":"10.1007/s10971-024-06590-8","DOIUrl":"10.1007/s10971-024-06590-8","url":null,"abstract":"<div><p>The hospital wastewater is major contributor to pharmaceutical contaminants, particularly antibiotic like tetracycline. Tetracycline is often found as a pollutant in water bodies, primarily due to its improper disposal and excretion through human and animal waste. This wastewater poses serious environmental and health risks. We synthesized a novel composite material M type lead hexaferrites/g-carbon nitride (PbFe<sub>12</sub>O<sub>19</sub>/g-C<sub>3</sub>N<sub>4</sub>) to address this alarming issue. The combine effect of lead hexaferrite with graphitic-C<sub>3</sub>N<sub>4</sub>, aiming to enhance the degradation of tetracycline (TC). The characterization of the synthesized composite was conducted using X-ray diffraction spectroscopy (XRD), Scanning electron microscope (SEM), Fourier transform infrared radiation spectroscopy (FTIR) and UV-Visible spectroscopy. The photocatalytic output of the samples was evaluated under sunlight irradiation. The results demonstrated superior removal efficiency of tetracycline up to 90% in only 60 min compared to individual components. This work highlights the potential of PbFe<sub>12</sub>O<sub>19</sub>/g-C<sub>3</sub>N<sub>4</sub> composites as effective photocatalysts for treating pharmaceutical contaminants especially tetracycline in wastewater.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"801 - 813"},"PeriodicalIF":2.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arooj Fatima, Albandari W. Alrowaily, Haifa A. Alyousef, B. M. Alotaibi, A. Dahshan
{"title":"Novel molybdenum sulfide-decorated graphitic carbon nitride nanohybrid for enhanced electrochemical oxygen evolution reaction","authors":"Arooj Fatima, Albandari W. Alrowaily, Haifa A. Alyousef, B. M. Alotaibi, A. Dahshan","doi":"10.1007/s10971-024-06561-z","DOIUrl":"10.1007/s10971-024-06561-z","url":null,"abstract":"<div><p>Transition metal chalcogenides are potentially better than electrocatalysts for the OER electrolysis that contain rare earth metals. Still, they have not yet developed to a catalytic performance level that would enable widespread adoption. To attain high-efficiency OER, it is imperative to create logical designs for electrocatalysts based upon transition metals on showing polymer substrate. Here, we discuss the sonication fabrication and extraordinary catalytic activity of MoS<sub>2</sub>/g-CN in alkaline media as an OER electrocatalyst. Various techniques like X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and scanning electron microscopy (SEM) are employed to evaluate the structure, surface characteristics and morphology. Conversely, the MoS<sub>2</sub>/g-CN electrode’s higher specific SA, outstanding conductivity and very porous framework in 1 M alkaline KOH led to superior OER campaign (overpotential 203 mV with Tafel slope 36 mV/dec). It showed increased OER activity by maintaining high stability for about 35 h. Our results suggest that graphitic carbon nitride can produce steady and sustainable energy and that transition metal chalcogenides with specific morphologies can improve electrocatalytic efficacy. Because of the distinct crystal phase-linked electrical properties, this discovery provides a fresh perspective for potential applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"776 - 789"},"PeriodicalIF":2.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"“Tuning density and morphology of organic-inorganic hybrid-silica aerogels through precursor dilution for lightweight applications”","authors":"K. Steffens, D. Bialuschewski, B. Milow","doi":"10.1007/s10971-024-06572-w","DOIUrl":"10.1007/s10971-024-06572-w","url":null,"abstract":"<div><p>Organic-inorganic hybrid-silica aerogels can be made of methyltrimethoxysilane (MTMS, CH<sub>3</sub>Si(OCH<sub>3</sub>)<sub>3</sub>) and dimethyldimethoxysilane (DMDMS, Si(OCH<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>)<sub>2</sub>) in a typical sol-gel process yielding flexible and hydrophobic structures. In this work, MTMS and DMDMS were condensed with an increasing amount of water, leading to a decrease in the final materials density from ∼ 0.110 g cm<sup>−3</sup> down to ∼0.066 g cm<sup>−3</sup>. The gels were synthesized in a one-pot synthesis and dried under ambient pressure conditions at 80 °C. While the topology of the network remained intact, the size of secondary particles decreased from roughly 8.2 to 3.3 μm. The inter-particle neck thickness remained unaffected with increasing aging time for higher dilutions. The measured thermal conductivities were all in similar range (∼ 32.5 mW (m K)<sup>−1</sup> at 25 °C), showing very good insulation characteristics. In general, higher diluted samples exhibited increasing softness and decreasing Young’s modulus, even with increased aging times. Overall, our optimized recipe leads to hydrophobic aerogels with ultralow densities while demonstrating very low thermal conductivity and a flexible mechanical performance.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"768 - 775"},"PeriodicalIF":2.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10971-024-06572-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Up-conversion materials for solid-state lighting","authors":"Rui M. Almeida, E. Alves, Luís F. Santos","doi":"10.1007/s10971-024-06577-5","DOIUrl":"10.1007/s10971-024-06577-5","url":null,"abstract":"<div><p>Conventional phosphor-converted white LEDs (WLEDs), using (Stokes) down-conversion light emission, suffer from a red deficiency that increases the Color Temperature towards “cool white light” above 5000 K. The present work describes a phosphor-Up-converted WLED approach that wishes to overcome this issue by achieving white light generation (WLG) through Up-conversion photoluminescence (UCPL), without energy losses due to Stokes shift and excited by a 980 nm LED instead of the more expensive blue LEDs. The UC materials include thin films of lanthanide (Ln)-doped aluminosilicate glass multilayers, alternating (Ln)-doped aluminosilicate and titania films in the form of 1-D photonic crystals and Ln ion-implanted materials. Sol-gel (SG) processing has been used as a low-cost high purity processing method to prepare titania, as well as aluminosilicate films containing Er<sup>3+</sup>, Tm<sup>3+</sup> and Yb<sup>3+</sup>, for WLG and possible application as WLED materials. The total Ln content varied from a high of 22 mol% to as low as 5.8 mol%. The materials prepared have been characterized by UV-Vis-NIR (using a variable angle specular reflection accessory), plus FTIR and UCPL spectroscopies. The UC light emission was analyzed with the help of CIE chromaticity diagrams.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>Left: UC spectra of bulk aluminosilicate glass with 84.2 SiO<sub>2</sub>–10 AlO<sub>1.5</sub>–0.3 Tm–0.5 Er–5 Yb, excited at different 980 nm laser power levels. Right: UC spectra of a 84 SiO<sub>2</sub>–10 AlO<sub>1.5</sub>–0.5 Tm–0.5 Er–5 Yb microcavity excited with 5 W of 980 nm laser power, collected at 10° off-normal (solid black line), together with a reference film with the same number of aluminosilicate glass layers and dopant concentrations (dotted red line).</p></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 1","pages":"56 - 62"},"PeriodicalIF":2.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10971-024-06577-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdelatif Aouadi, Djamila Hamada Saoud, Abdelkrim Rebiai, Salah Eddine Laouini, Abdelhak Achouri, Abdelmalek Zaater, Fahad Alharthi, Abderrhmane Bouafia, Hamdi Ali Mohammed, Gamil Gamal Hasan, Johar Amin Ahmed Abdullah
{"title":"Valorizing shrimp shell chitosan: a versatile biomaterial for fabricating effective antibacterial and antioxidant silver nanoparticles","authors":"Abdelatif Aouadi, Djamila Hamada Saoud, Abdelkrim Rebiai, Salah Eddine Laouini, Abdelhak Achouri, Abdelmalek Zaater, Fahad Alharthi, Abderrhmane Bouafia, Hamdi Ali Mohammed, Gamil Gamal Hasan, Johar Amin Ahmed Abdullah","doi":"10.1007/s10971-024-06578-4","DOIUrl":"10.1007/s10971-024-06578-4","url":null,"abstract":"<div><p>A study was conducted to explore the potential of using chitosan (CS) derived from shrimp shells, a bioorganic waste product, as a reducing and capping agent in the synthesis of silver nanocomposites (Cs-Ag NC). The objective of the study was to develop a simpler, faster, and more environmentally friendly method for producing Cs-Ag NC. The synthesized Cs-Ag NC was characterized using UV-Vis spectroscopy, X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy. The findings revealed that the Cs-Ag NC exhibited a crystalline structure, was coated with CS components, and had a spherical shape with an average diameter of approximately 20 nm. Under optimal conditions, the synthesized Cs-Ag NC demonstrated significant free radical scavenging activity against <i>2-diphenyl-1-picrylhydrazyl</i> (DPPH) with an IC50 value of 1.65 mg/mL, substantial free radical scavenging activity against 2,2’-azino-bis(<i>3-ethylbenzothiazoline-6-sulfonic acid</i>) (ABTS) with an IC50 value of 2.8 mg/mL, and notable anti-inflammatory activity. Additionally, the Cs-Ag NC exhibited significant antibacterial activity against several pathogenic strains, including <i>Pseudomonas aeruginosa</i>, <i>Escherichia coli</i>, and <i>Staphylococcus aureus</i>. Based on these findings, the synthesized Cs-Ag NC possess promising potential as therapeutic drugs for antioxidant and antibacterial applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"752 - 767"},"PeriodicalIF":2.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Ávalos-Marrón, L. A. Diaz-Torres, C. Gómez-Solís, A. Torres-Castro, R. A. Rodríguez-Rojas, P. García-Ramírez
{"title":"Facile sol-gel synthesis of ZnAl2O4 spinel nanoceramics for photocatalytic applications: H2 production and MB dye degradation","authors":"E. Ávalos-Marrón, L. A. Diaz-Torres, C. Gómez-Solís, A. Torres-Castro, R. A. Rodríguez-Rojas, P. García-Ramírez","doi":"10.1007/s10971-024-06575-7","DOIUrl":"10.1007/s10971-024-06575-7","url":null,"abstract":"<p>ZnAl<sub>2</sub>O<sub>4</sub> spinel nanoceramic was successfully synthesized by a sol-gel combustion method and subsequent annealing at temperatures as low as 500 °C. The photocatalytic activity of the synthesized spinels was evaluated for the H<sub>2</sub> photocatalytic production and photodegradation of methylene blue dye (MB) under UV light irradiation. ZnAl<sub>2</sub>O<sub>4</sub> spinels were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR), UV-vis spectroscopy, and Photoluminescence (PL). XRD revealed that the low-temperature calcination ZnAl<sub>2</sub>O<sub>4</sub> spinel nanoceramics have a cubic crystalline structure and nanocrystallites sizes between 10–21 nm. The presence of carbon dot (CDs) nanoparticles is suggested by FTIR, UV-vis, and EDS characterization. Band gap values, estimated from diffuse reflectance spectra, are between 2.00 eV and 4.26 eV, for ZnAl<sub>2</sub>O<sub>4</sub> calcined between 500 °C and 900 °C. The best H<sub>2</sub> evolution was achieved with ZnAl<sub>2</sub>O<sub>4</sub> treated at 500 °C reaching a 145 μmol g<sup>−1</sup> production after 2 h. The highest percentage of MB dye degradation of 84%, after 120 min of UV irradiation, was achieved with ZnAl<sub>2</sub>O<sub>4</sub> spinel treated at 900 °C.</p>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 1","pages":"109 - 122"},"PeriodicalIF":2.3,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vaibhav K. Raut, Sandeep B. Somvanshi, Elmuez A. Dawi, Chandrakant T. Birajdar
{"title":"“Sol-gel auto combustion synthesis of Al3+-Gd3+ ions co-doped cobalt ferrite nanoparticles for nanoelectronics applications”","authors":"Vaibhav K. Raut, Sandeep B. Somvanshi, Elmuez A. Dawi, Chandrakant T. Birajdar","doi":"10.1007/s10971-024-06571-x","DOIUrl":"10.1007/s10971-024-06571-x","url":null,"abstract":"<div><p>This study focused on investigating cobalt ferrite nanoparticles doped with trivalent Al<sup>3+</sup> and Gd<sup>3+</sup> ions across compositions ranging from CoFe<sub>2-2x</sub>Al<sub>x</sub>Gd<sub>x</sub>O<sub>4</sub> (x = 0.00, 0.02, 0.04, 0.06, 0.08). The nanoparticles were synthesized using the sol-gel auto-ignition method with citric acid as a chelating agent. Structural analysis via Rietveld-refined X-ray diffraction confirmed the formation of single-phase nanoparticles with a cubic spinel structure. Morphological examination through scanning electron microscopy revealed spherical-shaped grains. Elemental analysis using energy-dispersive X-ray analysis indicated consistent composition and high purity. Infrared spectra analysis verified the presence of characteristic modes typical of spinel ferrite structures. Magnetic properties assessed by vibrating sample magnetometry demonstrated soft magnetic behavior with lower coercivity. DC electrical resistivity measurements indicated a decrease in resistivity with increasing Al<sup>3+</sup>-Gd<sup>3+</sup> co-doping, while dielectric studies showed enhanced properties in this regard. Overall, the findings suggest that these co-doped cobalt ferrite nanoparticles hold promise for applications in magneto-electronic devices.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"738 - 751"},"PeriodicalIF":2.3,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nongmaithem Century Luwang, Devendra Kumar Rana, M. K. Yadav, Himanshu Sharma, Arun Kumar, Sarvendra Kumar, Surbhi
{"title":"Synthesis of ZnO nanostructure via CBD and solvothermal method using seed technique","authors":"Nongmaithem Century Luwang, Devendra Kumar Rana, M. K. Yadav, Himanshu Sharma, Arun Kumar, Sarvendra Kumar, Surbhi","doi":"10.1007/s10971-024-06557-9","DOIUrl":"10.1007/s10971-024-06557-9","url":null,"abstract":"<div><p>ZnO nanorods were synthesized by using the seeds technique. The seeds were synthesized by the low-cost synthesis technique, the Chemical Bath Deposition (CBD) method. Further, CBD and solvothermal methods used these seeds in the next deposition to coating. The XRD results confirm the formation of the ZnO hexagonal phase. FESEM high magnification images confirm the formation of hexagonal-shaped nanorods for Samples 1 and 3 and for Sample 2 mixed nanostructures of disk-like nanoparticles and nanorods were observed. Further, these nanorods were used as the catalytic material under the halogen lamp to study dye degradation. Samples 1 and 3 show degradation up to 55% and 68%, whereas Sample 3 showed a higher catalytic rate which degraded methyl orange 90% dye in 40 min. The enhancement in catalytic activity is explained by structural, morphological, and optical properties. The deposition using the seeds technique enhanced the degradation efficiency.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"728 - 737"},"PeriodicalIF":2.3,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adapting sol-gel chemistry for ionogel solid electrolytes","authors":"Bintao Hu, Andrew Tuokkola, Bruce Dunn","doi":"10.1007/s10971-024-06570-y","DOIUrl":"10.1007/s10971-024-06570-y","url":null,"abstract":"<div><p>Ionogels have recently attracted considerable interest as pseudo-solid electrolytes based on their 2-phase microstructure in which an ionic liquid (IL) is confined within the mesoporous architecture of a sol-gel derived silica matrix. In this review, we show how sol-gel synthesis has played a central role in the development of ionogel materials. Ionogels are effectively ‘wet gels’. They are formulated to enable hydrolysis and condensation of alkoxysilane precursors but use an IL as the solvent phase. ILs, which are considered to be room temperature molten salts, have minimum vapor pressures and thus do not evaporate. At the nanoscale, the resulting ionogel possesses a nanofluidic state, but macroscopically it is solid. This unique microstructure enables the ionogel to exhibit the excellent electrochemical properties of the IL including high ionic conductivity, a wide electrochemical stability window along with good thermal and mechanical stability. The nanofluidic state ensures that there is excellent electrical contact between the solid electrode and the pseudo-solid electrolyte. This overcomes one of the problems associated with solid-state batteries, namely solid-solid interfaces. Ionogels have already been used in a number of electrochemical applications including lithium-ion and sodium-ion batteries as well as lithium metal and sodium metal batteries. The electrochemical properties of ionogels, their applications in battery systems and future opportunities in consumer electronics, transportation and the grid are highlighted.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 1","pages":"70 - 85"},"PeriodicalIF":2.3,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Facile preparation of silicon/carbon anode derived from macroporous methylsilsesquioxane for lithium-ion batteries","authors":"Yunpeng Shan, Jiaqi Shan, Junzhang Wang, Zhou Xu, Xingzhong Guo","doi":"10.1007/s10971-024-06563-x","DOIUrl":"10.1007/s10971-024-06563-x","url":null,"abstract":"<div><p>Silicon/carbon (Si/C) anode materials were fabricated by an improved magnesiothermic reduction of macroporous methylsilsesquioxane (MSQ) as the precursor, followed by a carbon filling. The macroporous MSQ is reduced to macroporous silicon, and the pitch and graphite are filled into the pore structure of silicon via the impregnation and carbonization to prepare Si/C anode materials. The obtained Si/C anodes exhibit superior comprehensive electrochemical performance with a high initial charge and discharge capacity of 1437.0 and 1180.6 mAh g<sup>−1</sup> at a current density of 300 mA g<sup>−1</sup> and a remarkable initial coulombic efficiency of 82.16%. This work provides a facile approach for the preparation of anodes for lithium-ion batteries.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 1","pages":"39 - 47"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142940983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}