2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)最新文献

筛选
英文 中文
Optimizing ULK film properties to enable BEOL integration with TDDB reliability 优化ULK薄膜性能,使BEOL与TDDB可靠性集成
E. T. Ryan, D. Priyadarshini, Stephen M. Gates, Hosadurga Shobha, James Hsueh-Chung Chen, Kumar Virwani, Anita Madan, E. Adams, Elbert E. Huang, E. Liniger, D. Collins, M. Stolfi, Kang Sub Yim, Alexandros T. Demos, Alfred Grill
{"title":"Optimizing ULK film properties to enable BEOL integration with TDDB reliability","authors":"E. T. Ryan, D. Priyadarshini, Stephen M. Gates, Hosadurga Shobha, James Hsueh-Chung Chen, Kumar Virwani, Anita Madan, E. Adams, Elbert E. Huang, E. Liniger, D. Collins, M. Stolfi, Kang Sub Yim, Alexandros T. Demos, Alfred Grill","doi":"10.1109/IITC-MAM.2015.7325597","DOIUrl":"https://doi.org/10.1109/IITC-MAM.2015.7325597","url":null,"abstract":"Increasing circuit density in multilevel back-end-of line (BEOL) interconnects is necessary to improve integrated circuit performance and area scaling. Ultra low-k (ULK) dielectrics are used to minimize capacitance for lower power consumption and better capacitance-resistance (RC) performance. However, these materials pose integration and reliability challenges, which have limited our ability to scale the dielectric constant lower.1 Minimizing porosity, maximizing carbon content, and altering how carbon is bonded in porous SiCOH films reduces plasma-induced damage (PID) to the ULK and improves TDDB reliability, but these improvement must be balanced by maintaining other film properties such as elastic modulus. This paper describes one technique to achieve this combination of high carbon content and low porosity to allow k scaling while meeting integration and reliability requirements.","PeriodicalId":6514,"journal":{"name":"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)","volume":"80 8 1","pages":"349-352"},"PeriodicalIF":0.0,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87990865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Nanometre scale 3D nanomechanical imaging of semiconductor structures from few nm to sub-micrometre depths 从几纳米到亚微米深度的半导体结构的纳米尺度三维纳米力学成像
O. Kolosov, F. Dinelli, A. Robson, A. Krier, M. Hayne, V. Fal’ko, M. Henini
{"title":"Nanometre scale 3D nanomechanical imaging of semiconductor structures from few nm to sub-micrometre depths","authors":"O. Kolosov, F. Dinelli, A. Robson, A. Krier, M. Hayne, V. Fal’ko, M. Henini","doi":"10.1109/IITC-MAM.2015.7325609","DOIUrl":"https://doi.org/10.1109/IITC-MAM.2015.7325609","url":null,"abstract":"Multilayer structures of active semiconductor devices (1), novel memories (2) and semiconductor interconnects are becoming increasingly three-dimensional (3D) with simultaneous decrease of dimensions down to the few nanometres length scale (3). Ability to test and explore these 3D nanostructures with nanoscale resolution is vital for the optimization of their operation and improving manufacturing processes of new semiconductor devices. While electron and scanning probe microscopes (SPMs) can provide necessary lateral resolution, their ability to probe underneath the immediate surface is severely limited. Cross-sectioning of the structures via focused ion beam (FIB) to expose the subsurface areas often introduces multiple artefacts that mask the true features of the hidden structures, negating benefits of such approach. In addition, the few tens of micrometre dimension of FIB cut, make it unusable for the SPM investigation.","PeriodicalId":6514,"journal":{"name":"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)","volume":"17 1","pages":"43-46"},"PeriodicalIF":0.0,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91185826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Numerical simulation of nano-indentation induced fracture of low-k dielectric thin films using the cube corner indenter 利用立方角压头对低k介电薄膜的纳米压痕断裂进行数值模拟
H. Zahedmanesh, K. Vanstreels, Mario Gonzalez
{"title":"Numerical simulation of nano-indentation induced fracture of low-k dielectric thin films using the cube corner indenter","authors":"H. Zahedmanesh, K. Vanstreels, Mario Gonzalez","doi":"10.1109/IITC-MAM.2015.7325630","DOIUrl":"https://doi.org/10.1109/IITC-MAM.2015.7325630","url":null,"abstract":"In this study, indentation and fracture of compliant low-dielectric constant (low-k) films on silicon substrates was investigated by means of finite element (FE) modelling. Cohesive zone damage models were employed for fracture simulation and damage constitutive parameters and plastic yield stress of organosilicate glass 2.4 (OSG 2.4) low-k films coated on silicon substrates were obtained by correlating the force-displacement and crack growth response with experiments. The model lends itself to characterization of brittle films where the value of the Young's modulus, the maximum cohesive strength, the critical cohesive energy release rate and plastic yield stress of the low-k films can be extracted only by conducting cube corner indentation experiments and employing the finite element model.","PeriodicalId":6514,"journal":{"name":"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)","volume":"74 1","pages":"75-78"},"PeriodicalIF":0.0,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90651887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Copper-copper direct bonding: Impact of grain size 铜-铜直接键合:晶粒尺寸的影响
P. Gondcharton, B. Imbert, L. Benaissa, M. Verdier
{"title":"Copper-copper direct bonding: Impact of grain size","authors":"P. Gondcharton, B. Imbert, L. Benaissa, M. Verdier","doi":"10.1109/IITC-MAM.2015.7325657","DOIUrl":"https://doi.org/10.1109/IITC-MAM.2015.7325657","url":null,"abstract":"In recent years, a great interest has emerged in the development of new wafer-scale assembly processes. Beside the mechanical strength required, some applications need a vertical conductivity leading to implement metal thin films as bonding layers. For its interesting properties in terms of resistivity and reliability, copper has been already used in metal-metal direct bonding configuration. Initially developed on amorphous silicon dioxide layers, the polycristallinity character of metal films has a direct impact on the direct bonding mechanisms. In this paper, we will study the effect of grain size on direct bonding of polycrystalline copper thin films. More specifically at temperature below 150°C, a fine-grain copper microstructure demonstrates a fast sealing strengthening. For higher temperature application, a larger grain size enables limiting the copper-barrier interface damage and preserves a strong mechanical link between substrates.","PeriodicalId":6514,"journal":{"name":"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)","volume":"84 4","pages":"229-232"},"PeriodicalIF":0.0,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91463230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Process development of replacement metal gate Tungsten chemical mechanical polishing on 14nm technology node and beyond 14nm及以上节点替代金属栅钨化学机械抛光工艺开发
J. C. Lin, H. Liu, W. Lin, C. -. Lin, T. Hung, K. R. Li, J. F. Lin, J. Y. Wang, C. C. Liu, J. Y. Wu
{"title":"Process development of replacement metal gate Tungsten chemical mechanical polishing on 14nm technology node and beyond","authors":"J. C. Lin, H. Liu, W. Lin, C. -. Lin, T. Hung, K. R. Li, J. F. Lin, J. Y. Wang, C. C. Liu, J. Y. Wu","doi":"10.1109/IITC-MAM.2015.7325634","DOIUrl":"https://doi.org/10.1109/IITC-MAM.2015.7325634","url":null,"abstract":"The control of gate height uniformity, especially within-die gate height uniformity, and metal gate surface properties of 14nm technology node replacement metal gate (RMG) chemical mechanical polishing is important for 14nm high-k metal gate (HKMG) process. Good within-die uniformity would benefit for the following Tungsten etching back process(WEB) to have a uniform within-die etching depth, and proper post CMP Tungsten gate surface properties would generate a thinner Tungsten oxide surface to reduce WEB process loading. This study demonstrated the possibility of Tungsten gate CMP(WGCMP) to obtain good within-die gate height uniformity by selection of slurry and proper Tungsten gate surface by post buffing step CMP treatment. Due to high hardness of Tungsten, hardness of polishing pad and abrasive of slurry selection should be not a gap for micro scratch improvement, what the performance focus would put on within-die uniformity and post CMP Tungsten surface properties. In this study, the first result showed the control of erosion was important for within-die gate height uniformity. The criteria of slurry selection for WGCMP were higher Tungsten removal rate and lower oxide removal rate which especially resulted in lower pattern density area of erosion. And the second result showed Chemical-A polish time of post-Tungsten buffing CMP would dominate the Tungsten surface properties and influence WEB behavior.","PeriodicalId":6514,"journal":{"name":"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)","volume":"233 1","pages":"115-118"},"PeriodicalIF":0.0,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76975770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
In-situ electrical characterization of Pt/NiO/Pt resistive memory elementary cells during FIB milling: A step towards electrical tomography of nanofilaments 在FIB铣削过程中,Pt/NiO/Pt电阻性记忆初级细胞的原位电学表征:迈向纳米细丝电断层扫描的一步
C. Guedj, G. Auvert, E. Martinez
{"title":"In-situ electrical characterization of Pt/NiO/Pt resistive memory elementary cells during FIB milling: A step towards electrical tomography of nanofilaments","authors":"C. Guedj, G. Auvert, E. Martinez","doi":"10.1109/IITC-MAM.2015.7325625","DOIUrl":"https://doi.org/10.1109/IITC-MAM.2015.7325625","url":null,"abstract":"Electrical characterization during FIB milling of an elementary Pt/NiO/Pt resistive memory cell is used to localize the conducting channels and to estimate the size and shape of the nanofilament. A good agreement is found with cross sectional high resolution Transmission Electron Microscopy images. This methodology is a potential tool to obtain in-operando electrical tomography of conducting paths with subnanometric spatial resolution.","PeriodicalId":6514,"journal":{"name":"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)","volume":"38 1","pages":"57-58"},"PeriodicalIF":0.0,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77339940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Aluminum-capped copper bond pads for ultrasonic heavy copper wire-bonding on power devices 用于电力设备上超声波重铜线连接的铝盖铜焊垫
David Gross, Sabine Haag, M. Reinold, M. Schneider-Ramelow, K. Lang
{"title":"Aluminum-capped copper bond pads for ultrasonic heavy copper wire-bonding on power devices","authors":"David Gross, Sabine Haag, M. Reinold, M. Schneider-Ramelow, K. Lang","doi":"10.1109/IITC-MAM.2015.7325658","DOIUrl":"https://doi.org/10.1109/IITC-MAM.2015.7325658","url":null,"abstract":"Thick electroplated Cu bond pads have lately been demonstrated to enable heavy Cu wire-bonding but the Cu oxides necessitate an additional cleaning step after the die-attach. To avoid such cleaning, the use of a thin Al layer is tested for its passivating ability on Cu bond pads and its suitability for the bonding process. Results show a significant improvement of the oxidation resistance and bonding performance.","PeriodicalId":6514,"journal":{"name":"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)","volume":"10 1","pages":"233-236"},"PeriodicalIF":0.0,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74278348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Plasma etch challenges at 14nm and beyond technology nodes in the BEOL BEOL中14nm及以上技术节点的等离子蚀刻挑战
P. Brun, F. Bailly, M. Guillermet, E. Aparico, N. Possémé
{"title":"Plasma etch challenges at 14nm and beyond technology nodes in the BEOL","authors":"P. Brun, F. Bailly, M. Guillermet, E. Aparico, N. Possémé","doi":"10.1109/IITC-MAM.2015.7325604","DOIUrl":"https://doi.org/10.1109/IITC-MAM.2015.7325604","url":null,"abstract":"With the constant scaling down in dimension, the metal hard mask strategy, integration of choice for porous SiOCH film integration, presents new issues that cannot not been neglected for the 14nm and beyond. These issues and associated solutions are presented from plasma etch point of view for the 14nm node.","PeriodicalId":6514,"journal":{"name":"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)","volume":"22 1","pages":"21-24"},"PeriodicalIF":0.0,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74298472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Advanced integrated metallization enables 3D-IC TSV scaling 先进的集成金属化使3D-IC TSV缩放
Jengyi Yu, S. Gopinath, P. Nalla, Matthew Thorum, L. Schloss, D. M. Anjos, Prashant Meshram, G. Harm, Joe Richardson, T. Mountsier
{"title":"Advanced integrated metallization enables 3D-IC TSV scaling","authors":"Jengyi Yu, S. Gopinath, P. Nalla, Matthew Thorum, L. Schloss, D. M. Anjos, Prashant Meshram, G. Harm, Joe Richardson, T. Mountsier","doi":"10.1109/IITC-MAM.2015.7325620","DOIUrl":"https://doi.org/10.1109/IITC-MAM.2015.7325620","url":null,"abstract":"Innovative solutions have been developed to address the challenges of through-silicon via (TSV) metallization with small sizes and high aspect ratios. We demonstrate an advanced metallization scheme including conformal film depositions of metal barrier and seed with excellent sidewall coverage to achieve void-free Cu fill in small-size (10 to 1 μm) TSV with high aspect ratio (10:1 to 20:1). In addition, it reduces the field metal thickness to significantly lower the costs of metallization and subsequent CMP. TSVs fabricated using this new process integration scheme exhibited higher breakdown voltage and lower leakage current than those made with the conventional PVD barrier seed. No degradation in performance was observed after 400°C annealing and thermal cycling. The improved performance is attributed to the formation of pinhole-free metal barrier layer with excellent sidewall coverage.","PeriodicalId":6514,"journal":{"name":"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)","volume":"29 1","pages":"205-208"},"PeriodicalIF":0.0,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85377307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Nickel silicide for source-drain contacts from ALD NiO films 硅化镍用于ALD NiO薄膜的源极-漏极触点
V. Pore, E. Tois, R. Matero, S. Haukka, M. Tuominen, J. Woodruff, Brennan Milligan, F. Tang, M. Givens
{"title":"Nickel silicide for source-drain contacts from ALD NiO films","authors":"V. Pore, E. Tois, R. Matero, S. Haukka, M. Tuominen, J. Woodruff, Brennan Milligan, F. Tang, M. Givens","doi":"10.1109/IITC-MAM.2015.7325617","DOIUrl":"https://doi.org/10.1109/IITC-MAM.2015.7325617","url":null,"abstract":"In this work, we demonstrate the preparation of nickel monosilicide (NiSi) layers on silicon using a conformal NiO ALD process and thin sacrificial Ge interlayers. The interlayers protect the underlying Si from oxidizing during the NiO growth, while allowing for Ni diffusion during a silicidation anneal. The NiSi layers prepared have low amounts of impurities and near bulk resistivities, therefore making the processes promising candidates for applications in advanced semiconductor devices where high quality NiSi layers are needed, such as source-drain contacts. Good step coverage provided by ALD enables their use for example in non-planar transistors such as FinFETs and other multi-gate transistors with complex topographies.","PeriodicalId":6514,"journal":{"name":"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)","volume":"41 1","pages":"191-194"},"PeriodicalIF":0.0,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77669716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信