2010 International Conference on Enabling Science and Nanotechnology (ESciNano)最新文献

筛选
英文 中文
Electrically conductive zinc oxide (ZnO) nanostructures prepared by solgel spin-coating 溶胶旋涂法制备导电氧化锌纳米结构
N. Sin, M. H. Mamat, M. Rusop, Z. Zulkifli
{"title":"Electrically conductive zinc oxide (ZnO) nanostructures prepared by solgel spin-coating","authors":"N. Sin, M. H. Mamat, M. Rusop, Z. Zulkifli","doi":"10.1063/1.3586953","DOIUrl":"https://doi.org/10.1063/1.3586953","url":null,"abstract":"The electrically conductive zinc oxide (ZnO) nanostructures prepared by sol-gel spin coating are presented. This project has been focused on electrical, optical and structural properties of Al doped ZnO thin film. The effects of Al doping concentration at 0∼5 at.% on the Al doped ZnO thin film properties have been investigated. This project involves 3 processes which are thin film preparation, deposition and characterization. The thin films were characterized using Current-Voltage (I–V) measurement and UV-Vis-NIR spectrophotometer for electrical properties and optical properties respectively. The surface morphology has been characterized using field emission scanning electron microscope (FESEM). The I-V measurement result indicated electrical properties of Al doped ZnO thin film improved with Al doping. The absorption coefficient spectra obtained from UV-Vis-NIR spectrophotometer measurement show all films have low absorbance in visible and near infrared (IR) region but have high UV absorption properties. The FESEM investigations shows that the nanoparticles size become smaller and denser as the doping concentration increase.","PeriodicalId":6354,"journal":{"name":"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)","volume":"49 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85802502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Single electron-hole pair generation using dark-bright solitons conversion control 利用暗-亮孤子转换控制产生单电子-空穴对
2010 International Conference on Enabling Science and Nanotechnology (ESciNano) Pub Date : 2010-12-01 DOI: 10.1109/ESCINANO.2010.5700953
R. Jomtarak, C. Teeka, P. Yupapin, J. Ali
{"title":"Single electron-hole pair generation using dark-bright solitons conversion control","authors":"R. Jomtarak, C. Teeka, P. Yupapin, J. Ali","doi":"10.1109/ESCINANO.2010.5700953","DOIUrl":"https://doi.org/10.1109/ESCINANO.2010.5700953","url":null,"abstract":"Recently, the electron-hole pair generated in 1.06-µm separate-absorber-avalanche (multiplier) InP-based devices [1], SiGe/Si planar waveguides [2] fabricated with a Ge concentration ranging from 2% to 6% and different thicknesses ranging from 200 nm to 2 µm, generating electron-hole pairs with a 100 fs laser pulse emitted at 810 nm, and monitoring the free-carrier absorption transient with a c.w. probe beam at 1.55 µm, bipolar transistors [3], CMOS process [4], InAs-GaSb superlattice (SL) photodiodes [5], resonant microcavity [6], A cavity-QED using a single InAs quantum dot and a high-Q whispering gallery mode [7].","PeriodicalId":6354,"journal":{"name":"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)","volume":"110 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79614850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication and electrical characterization of vacuum deposited n-CdTe/p-ZnTe heterojunction diodes 真空沉积n-CdTe/p-ZnTe异质结二极管的制备和电学特性
K. V. Bangera, K. Gowrish Rao, G. Shivakumar
{"title":"Fabrication and electrical characterization of vacuum deposited n-CdTe/p-ZnTe heterojunction diodes","authors":"K. V. Bangera, K. Gowrish Rao, G. Shivakumar","doi":"10.1063/1.3587012","DOIUrl":"https://doi.org/10.1063/1.3587012","url":null,"abstract":"The study of n-CdTe/p-ZnTe heterojunctions is of vital importance for the fabrication of single junction and tandem solar cells. In the present research work n-CdTe/p-ZnTe heterojunction diodes were prepared by high vacuum deposition technique. The growth conditions required for obtaining desired quality n-CdTe and p-ZnTe films were optimized by performing a series of trials. The n-CdTe/p-ZnTe heterojunctions were prepared by fist depositing CdTe film on glass substrate and then depositing ZnTe flim on top of CdTe. Detailed electrical characterization of the heterojunction was performed. The conduction in the heterojunction was predominantly due to thermionic emission at low voltages. However at higher voltages space charge limited conduction was found to be dominant. Many technically important parameters such as barrier height, width of the depletion region, carrier concentration etc were deduced by studying the I–V and C-V characteristics of the heterojunction. The activation energies of ZnTe and CdTe were determined by studying the variation of resistance with ambient temperature and a theoretical band diagram of the heterojunction was drawn using Anderson's model.","PeriodicalId":6354,"journal":{"name":"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)","volume":"26 1","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83474560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Covalent immobilization of tyrosinase onto commercial multi-walled carbon nanotubes and its effect on enzymatic activity 商用多壁碳纳米管上酪氨酸酶的共价固定化及其对酶活性的影响
2010 International Conference on Enabling Science and Nanotechnology (ESciNano) Pub Date : 2010-12-01 DOI: 10.1109/ESCINANO.2010.5701046
Tai Boon Kai, Z. Abdul Majid, S. Shahir
{"title":"Covalent immobilization of tyrosinase onto commercial multi-walled carbon nanotubes and its effect on enzymatic activity","authors":"Tai Boon Kai, Z. Abdul Majid, S. Shahir","doi":"10.1109/ESCINANO.2010.5701046","DOIUrl":"https://doi.org/10.1109/ESCINANO.2010.5701046","url":null,"abstract":"Multi-walled carbon nanotubes (MWCNTs) exhibit unique structural, electrical, mechanical, electrochemical, and chemical properties [1]. Moreover, the possibility of modifying their surface properties through different methods has stimulated increasing interest in their application as components in biosensors. In this sense, it is possible to employ carbon nanotubes as support to immobilize enzymes.","PeriodicalId":6354,"journal":{"name":"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)","volume":"124 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77338899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A linear 0.18um CMOS Distributed Low Noise Amplifier from 3.1 to 10.6 GHz with cascode cells 一种线性0.18um CMOS分布低噪声放大器,频率为3.1至10.6 GHz,带级联单元
S. Shamsadini, F. Kashani, Neda Bathaei
{"title":"A linear 0.18um CMOS Distributed Low Noise Amplifier from 3.1 to 10.6 GHz with cascode cells","authors":"S. Shamsadini, F. Kashani, Neda Bathaei","doi":"10.1063/1.3586976","DOIUrl":"https://doi.org/10.1063/1.3586976","url":null,"abstract":"In this paper, we propose a design methodology of 3.1–10.6GHz Ultra-wideband (UWB) Distributed Low Noise Amplifier using standard TSMC 0.18um CMOS technology. The four cells DLNA, each cell contains cascode architecture, can be use in broadband applications. The proposed distributed low noise amplifier has an appropriate input and output matching over the full band of 3.1–10.6 GHz. We achieve acceptable results for low noise amplifier as a flat power gain of 12dB (S21) from 3.1 to 10.6GHz, which is ripple only ±0.3 dB over the full UWB band. The proposed DLNA has an excellent linear behavior. The third intercept point (IIP3) of the proposed DLNA is +2dBm and P1dBin is −12dBm. An input impedance matching is <−15 dB (S11) and an output impedance matching of < −15 dB (S22) over the entire band. This LNA achieves the minimum noise figure of 2.8dB.","PeriodicalId":6354,"journal":{"name":"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)","volume":"25 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90369090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Changes in physical properties and molecular structure of polystyrene nanospheres exposed with daily solar flux 日晒下聚苯乙烯纳米球物理性质和分子结构的变化
P. J. Wibawa, M. Agam, Hadi Nur, H. Saim
{"title":"Changes in physical properties and molecular structure of polystyrene nanospheres exposed with daily solar flux","authors":"P. J. Wibawa, M. Agam, Hadi Nur, H. Saim","doi":"10.1063/1.3586954","DOIUrl":"https://doi.org/10.1063/1.3586954","url":null,"abstract":"The effects of physical properties and molecular structure of 200 nm polystyrene nanospheres (PSN) coated on silicon wafer exposed with daily solar flux were explored by field emission scanning electron microscope (FE-SEM) and attenuated total reflectance-Fourier transform infrared (ATR-FT-IR) spectrometer. It is revealed that the particles shape of PSN changed from spheric to eight-shaped after solar radiation. Reduction of the size as much as 29.5% after 5 minutes exposure was also observed in PSN particles. Changes in the molecular structure of the PSN particles after solar radiation were observed where some of the phenyl moieties of polystyrene broke down to facilitate carbon-carbon cross linkage bonds. These results demonstrated that the shrinkage of PSN particles is caused by the change of the molecular structure of polystyrene.","PeriodicalId":6354,"journal":{"name":"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)","volume":"1 1","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75268335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Heating effect of a one-dimensional molecular assembly on self-repairing capability in the nanoscopic channels of mesoporous silica 一维分子组装对介孔二氧化硅纳米通道中自修复能力的加热效应
2010 International Conference on Enabling Science and Nanotechnology (ESciNano) Pub Date : 2010-12-01 DOI: 10.1109/ESCINANO.2010.5700970
Hendrik Oktendy Lintang, K. Kinbara, T. Yamashita, T. Aida
{"title":"Heating effect of a one-dimensional molecular assembly on self-repairing capability in the nanoscopic channels of mesoporous silica","authors":"Hendrik Oktendy Lintang, K. Kinbara, T. Yamashita, T. Aida","doi":"10.1109/ESCINANO.2010.5700970","DOIUrl":"https://doi.org/10.1109/ESCINANO.2010.5700970","url":null,"abstract":"Self-repairable optoelectronic devices from a heat-induced structural damaged are potentially important for sensor [1] and display [2] applications. Recently, self-healing phenomena have attracted particular attention for developing sustainable structural materials [3], where extensive studies have been reported on polymeric materials capable of autonomous repairing macroscopic fractures or restoration lost mechanical strengths [4, 5]. On the other hand, for exploiting molecular devices that can self-repair elaborate functions, one may encounter different problems originating from much smaller size regimes. However, no rational strategies have yet been proposed for addressing this challenging issue. In our previous paper, when a phosphorescent columnar assembly of trinuclear gold(I) pyrazolate complex [Au3Pz3] is confined in the nanoscopic channel of hexagonal mesoporous silica [Au3Pz3]/silicahex (Fig. 1), upon stepwise heating from 20 °C to 140 °C in 45 min, the one-dimensional molecular assemblies are not only protected from thermal disruption but also strongly encouraged to self-recover to 100% in 5 h from a heat-induced structural damaged [6].","PeriodicalId":6354,"journal":{"name":"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)","volume":"8 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74068874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Effect of chirality on the silicon-carbon nanotube thermal interface resistance 手性对硅碳纳米管热界面电阻的影响
2010 International Conference on Enabling Science and Nanotechnology (ESciNano) Pub Date : 2010-12-01 DOI: 10.1109/ESCINANO.2010.5700955
M. Osman, Taejin Kim
{"title":"Effect of chirality on the silicon-carbon nanotube thermal interface resistance","authors":"M. Osman, Taejin Kim","doi":"10.1109/ESCINANO.2010.5700955","DOIUrl":"https://doi.org/10.1109/ESCINANO.2010.5700955","url":null,"abstract":"Thermal flow across the interface between two different materials is strongly affected by the differences in the electronic properties and vibrational modes of the two materials which give rise to the thermal interface resistance[1]. The thermal interface resistance results in a finite temperature discontinuity at the interface between the two materials. Reducing the thermal interface resistance between silicon chips and the packaging material is very critical for efficiently extracting heat and ensuring reliable operation of ICs. The large thermal conductivity of carbon nanotubes makes them very ideal for developing thermal switches and thermal interface materials [2]. We have investigated the thermal interface resistance between carbon nanotubes and silicon using molecular dynamic (MD) simulations.","PeriodicalId":6354,"journal":{"name":"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)","volume":"58 1","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75966733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanotechnology for solid-state lighting 用于固态照明的纳米技术
2010 International Conference on Enabling Science and Nanotechnology (ESciNano) Pub Date : 2010-12-01 DOI: 10.1109/ESCINANO.2010.5701097
Chua Soo Jin
{"title":"Nanotechnology for solid-state lighting","authors":"Chua Soo Jin","doi":"10.1109/ESCINANO.2010.5701097","DOIUrl":"https://doi.org/10.1109/ESCINANO.2010.5701097","url":null,"abstract":"Lighting has evolved over the last 150 years from the primordial use of fire, incandescence from filaments, to fluorescence and electrical discharge in gases. The use of each new material has led to the improvement in luminous efficacy by an order of magnitude. The incandescent light bulb, invented by Edison in 1879, will be phased out over the next few years as governments sought to ban its manufacture and use because of its low efficiency (< 5%) and to introduce green technology. The fluorescent lamp, which is widely used to replace the incandescent bulb with its use of mercury and presence of lead in some phosphors, is seen as an interim measure.","PeriodicalId":6354,"journal":{"name":"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)","volume":"2 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75748019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Growth of Au-catalyzed and self-catalyzed ZnO nanowires using chemical vapor deposition technique 化学气相沉积法生长au催化和自催化氧化锌纳米线
2010 International Conference on Enabling Science and Nanotechnology (ESciNano) Pub Date : 2010-12-01 DOI: 10.1109/ESCINANO.2010.5700937
Pu Yong, Choy Kwang Leong, Hou Xianghui
{"title":"Growth of Au-catalyzed and self-catalyzed ZnO nanowires using chemical vapor deposition technique","authors":"Pu Yong, Choy Kwang Leong, Hou Xianghui","doi":"10.1109/ESCINANO.2010.5700937","DOIUrl":"https://doi.org/10.1109/ESCINANO.2010.5700937","url":null,"abstract":"With the ongoing miniaturization of devices such as FETs [1], the synthesis of ZnO NWs (building blocks) has attracted extensive research interest. ZnO NWs have been synthesized via different routes by many research groups [2–4]. In order for these building blocks to be incorporated into functional nano-devices, controlled synthesis of the ZnO NWs to obtain features such as the desired size, shape and alignment should be fulfilled. This is a rather challenging task. A better understanding of the growth mechanism of ZnO NWs may be helpful to resolve these uncertainties. However, the underlying mechanism for the growth of the ZnO NWs for both self-catalyzed and Au-catalyzed ZnO NWs, have not been well elucidated. In addition, there is no fully developed cohesive model that explains the growth mechanism of both self-catalyzed and Au-catalyzed ZnO NWs.","PeriodicalId":6354,"journal":{"name":"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)","volume":"6 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83068017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信