Olga Bakina, Ludmila Ivanova, Andrey Miller, Anfisa Rechkunova
{"title":"One-Pot Electrical Explosion Synthesis of Heterophase CuO/Cu2O/Ag Nanoparticles as a Perspective Antimicrobial Agent","authors":"Olga Bakina, Ludmila Ivanova, Andrey Miller, Anfisa Rechkunova","doi":"10.1007/s10876-024-02696-9","DOIUrl":"10.1007/s10876-024-02696-9","url":null,"abstract":"<div><p>Obtaining new materials with antibacterial activity is an urgent task due to the emergence and proliferation of new antibiotic resistant strains, as well as the increasing requirements for the effectiveness and toxicity of such materials. Electrical explosion of two twisted wires (EETW) to produce of heterophase nanoparticles is attractive for develop novel antibacterial agents. Our work describes simple and environmental friendly way to obtain novel composite CuO/Cu<sub>2</sub>O/Ag nanoparticles with different silver mass ratio (15, 50, 90%) by the simultaneous electrical explosion of Ag and Cu twisted wires in oxygen containing atmosphere. The using of EETW for the production of heterophase NPs is due to several advantages such as high purity of nanoparticles, good productivity (about 120 g nanoparticles per hour) and eco-friendliness. The obtained nanoparticles have irregular spherical shape morphology. According to EDX analysis dates, the nanoparticles have Janus-like structure, where one part is enriched with Ag and the other with Cu and O. The mean particle size depended on silver content and was 63 ± 2 nm (90% Ag), 92 ± 2 nm (15% Ag). CuO/Cu<sub>2</sub>O/(50)Ag particle size distribution have two peaks, one at 35 ± 1 nm and the other at 79 ± 2 nm. The NP zeta potential of nanoparticles measured neutral pH and 25 °C was positive (more than 20 mV). CuO/Cu<sub>2</sub>O/Ag nanoparticles with 50% Ag significantly inhibited the growth of methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) with MIC = 62 µg/mL. The antibacterial activity nanoparticles with 90%Ag determined by the disco-diffusion method was slightly lower than that of the nanoparticles with 15 and 50% Ag. The possible antibacterial mechanisms may be attributed to the synergistic effect of the heterostructure of EETW nanoparticles and the formation of galvanic nanopairs. The presence of silver metal and copper oxides in nanoparticles can promote galvanic corrosion, leading to the release of more metal ions into the bacterial suspension. We have shown that the nanoparticles obtained have a positive zeta potential, unlike Ag nanoparticles, which may contribute to a better adhesion of nanoparticles to the surface of bacterial cells. The synthesized NPs have broad potential to be developed in pharmaceutics as an effective antimicrobial nanomaterial.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"2871 - 2883"},"PeriodicalIF":2.7,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A 2D Zn-MOF as an Efficient Luminescent Sensor for Detecting Cr2O72− in Water Media and HEPES Biological Buffer Solution","authors":"Xue-Li Niu, Qian Wu, Hua Yang, Lingqian Kong, Jian-Min Dou","doi":"10.1007/s10876-024-02698-7","DOIUrl":"10.1007/s10876-024-02698-7","url":null,"abstract":"<div><p>Efficient detection of toxic heavy metal anions Cr<sub>2</sub>O<sub>7</sub><sup>2−</sup> residue in water media is of great significance due to its severe damage to ecosystem and human health. Herein, a new 2D (two-dimensional) luminescent metal–organic frameworks (MOFs) {[Zn<sub>2</sub>(bmida)(phen)]·H<sub>2</sub>O}<sub>n</sub> (<i>abbr.</i><b>Zn-MOF</b>) (1,10-phen = 1,10-phenanthroline, H<sub>4</sub>bmida = N-(phosphonomethyl)iminodiacetic acid) was constructed and structurally characterized. Notably, this <b>Zn-MOF</b> as an efficient luminescent sensor can detect Cr<sub>2</sub>O<sub>7</sub><sup>2−</sup> both in water media and HEPES biological buffer solution with high selectivity and sensitivity, and good cyclic stability. The corresponding detection limit (LOD) of <b>Zn-MOF</b> towards Cr<sub>2</sub>O<sub>7</sub><sup>2−</sup> is as low as 1.21 and 5.46 µM with large quenching constant (<i>K</i><sub>sv</sub>), respectively. The LOD in H<sub>2</sub>O solution is lower than the benchmark of drinking water recommended by United States Environmental Protection Agency (USEPA, 1.92 µM). Moreover, a possible competitive energy absorption mechanism is suggested by multiple experiments.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"2803 - 2811"},"PeriodicalIF":2.7,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sulfated Polysaccharides Mediated Liquid Exfoliation of Molybdenum Disulfide Nanosheets: Preparation and Antibacterial Assessment","authors":"Pandurang Appana Dalavi, Sukesh Kumar Bajire, Rajesh P. Shastry, Jayachandran Venkatesan","doi":"10.1007/s10876-024-02693-y","DOIUrl":"10.1007/s10876-024-02693-y","url":null,"abstract":"<div><p>Microbial afflictions represent a significant global public health concern. The overuse of antibiotics and the ineffectiveness of conventional antibiotic therapies present substantial challenges in the biomedical field. Consequently, research scientific efforts are focused on developing nanoparticle-based microbial agents to address the escalating issue of antimicrobial resistance. In the present study, we synthesized fucoidan combined with molybdenum disulfide (MoS<sub>2</sub>) nanosheets using the liquid exfoliation technique, followed by thorough characterization. The UV-visible spectrum analysis revealed prominent absorption peaks at 610 and 672 nm, indicative of the successful formation of F-MoS<sub>2</sub> nanosheets. Subsequent antimicrobial assays demonstrated the exceptional antibacterial efficacy of the developed F-MoS<sub>2</sub> nanosheets against <i>Staphylococcus aureus (S. aureus)</i> and <i>Streptococcus mutans (S. mutans).</i> Moreover, in vivo toxicity assessment using the <i>Caenorhabditis elegans (C. elegans</i>) model disclosed that concentrations exceeding 125 µg/mL led to a reduction in the number of fertilized eggs laid by the worms. Furthermore, concentrations of 250 µg/mL resulted in delays in the reproductive cycle and impaired developmental fitness. Thus, the developed F-MoS<sub>2</sub> nanosheets exhibit promising prospects for application within the realm of biomedicine.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"2769 - 2785"},"PeriodicalIF":2.7,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mehrzad Zare, Masoud Rahbari-Sisakht, Amir Mansourizadeh
{"title":"Anti-Fouling Polysulfone-Graphene Oxide Ultrafiltration Membrane with High Capability in Water/Oil Emulsion Separation","authors":"Mehrzad Zare, Masoud Rahbari-Sisakht, Amir Mansourizadeh","doi":"10.1007/s10876-024-02695-w","DOIUrl":"10.1007/s10876-024-02695-w","url":null,"abstract":"<div><p>This study aimed to synthesize graphene oxide (GO) nanoparticles and subsequently modify them with trimethylsilyl chloride (TMSCl). The modified GO was employed in the fabrication of a polysulfone-graphene oxide (PSf-GO) ultrafiltration mixed-matrix membrane for oil and water separation. PSf-GO ultrafiltration mixed-matrix membranes were fabricated using different amounts of modified GO. The structure, properties, and characteristics of the synthesized GO and fabricated membranes were studied using various techniques, including contact angle measurements, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The performance of the membranes in the separation of oil and water and their antifouling affinities were evaluated and compared. Contact angle measurements indicated that the addition of GO nanoparticles increased the hydrophilicity of the membranes. The UF-0.50 (0.50%Wt GO@TMSCl) membrane demonstrated a water flux of 113.35 L/m<sup>2</sup> h and oil rejection of 97.44% during the ultrafiltration process, representing the highest performance among the fabricated membranes. Membrane fouling analysis revealed that this membrane performed better than the others, which could be attributed to the proper and uniform nanoparticle loading. The most favorable UF membrane antifouling performance was observed for the UF-0.5 membrane with a flux recovery percentage of 96.30%. Because of the efficient and appropriate performance of the UF-0.5 membrane, it was revealed that this membrane can be used as an effective UF membrane for the oil-water separation process, as well as in further studies.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"2787 - 2802"},"PeriodicalIF":2.7,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Govardhan Katta Radhakrishna, Sameera Hammigi Ramesh, Shannon D. Almeida, Golla Sireesha, Soundarya Ramesh, Panneerselvam Theivendren, A. Santhana Krishna Kumar, Kumarappan Chidamabaram, Damodar Nayak Ammunje, Selvaraj Kunjiappan, Parasuraman Pavadai
{"title":"Capsaicin-Entangled Multi-Walled Carbon Nanotubes Against Breast Cancer: A Theoretical and Experimental Approach","authors":"Govardhan Katta Radhakrishna, Sameera Hammigi Ramesh, Shannon D. Almeida, Golla Sireesha, Soundarya Ramesh, Panneerselvam Theivendren, A. Santhana Krishna Kumar, Kumarappan Chidamabaram, Damodar Nayak Ammunje, Selvaraj Kunjiappan, Parasuraman Pavadai","doi":"10.1007/s10876-024-02694-x","DOIUrl":"10.1007/s10876-024-02694-x","url":null,"abstract":"<div><p>Conventional treatment strategies suffer from a lack of solubility, low bioavailability at the target site, a lack of target specificity, and indiscriminate drug distribution, all of which lead to drug resistance. Therefore, the present study aimed to deliver capsaicin into breast cancer cells through folic acid-conjugated capsaicin-loaded carboxylic acid-functionalised multiwalled carbon nanotubes (FA-CAP-COOHMWCNTs). FA-CAP-COOHMWCNTs was formulated and characterized by FTIR (Fourier transform infrared spectroscopy), SEM (Scanning electron microscopy), HR-TEM (High-resolution transmission electron microscopy), and XRD (X-ray diffraction) analysis. In silico studies demonstrated that the active molecule, capsaicin can strongly bind onto C-SRC kinase receptor to suppress cancer progression. The in vitro cellular viability of MCF-7 breast cancer cells after 24h treatment with 100 µg × mL<sup>− 1</sup> of FA-CAP-COOHMWCNTs was found to be 29.27 ± 2.59% and IC<sub>50</sub> value was observed to be 22.71 µg × mL<sup>− 1</sup>. Subsequently, in vivo anticancer activity of FA-CAP-COOHMWCNTs was performed against 7,12-dimethylbenz(a) anthracene (DMBA)-induced breast cancer in female Wistar rats. After 21 days of treatment with FA-CAP-COOHMWCNTs, breast cancer-induced rats showed a significant reduction in mammary tumor size, and elevated levels of antioxidant enzymes in serum/breast tissue. The most powerful antioxidant effects were seen in the medium dose (5 mg × kg<sup>− 1</sup>) of FA-CAP-COOHMWCNTs, which also caused tumors to shrink significantly, almost as much as the standard drug (doxorubicin). Histopathological studies also showed near-normal architecture of breast tissue. Altogether, it can be interpreted that FA-CAP-COOHMWCNTs have antiproliferative efficacy against breast tumor progression in breast cancer-induced rats.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"2849 - 2869"},"PeriodicalIF":2.7,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Silver Nanoparticles and Polydimethylsiloxane-coated Paper for the Simultaneous Detection of Ascorbic Acid and Hydroquinone","authors":"Nutthaya Butwong, Siriboon Mukdasai, Pimpanitpa Kunthadong, Kamolwan Rintramee, Thidarat Kunawong","doi":"10.1007/s10876-024-02697-8","DOIUrl":"10.1007/s10876-024-02697-8","url":null,"abstract":"<div><p>This study developed a novel paper-based sensor for the simultaneous analysis of ascorbic acid (AA) and hydroquinone (HQ). The sensor utilized polyvinyl alcohol (PVA)-stabilized silver nanoparticles (AgNPs-PVA) as the reagent probe and PVA media acted as the filter for separation of the analytes. Polydimethylsiloxane (PDMS) and ethanol serve as the stationary phase and eluent, respectively, exploiting the differences in analyte reactions and solubility to achieve their separation on the filter paper. The circular sensor’s central zone was AA’s detection area, while HQ was detected in the outer ring region. AA induced an immediate color change in the test kit, whereas HQ required a 20-minute elution with ethanol followed by colorimetric analysis. All analytes exhibited relative standard deviations of repeatability and reproducibility below 2.7% and 9.5%, respectively. Under optimal conditions, the linear detection range for HQ was 0.2-2.0 mg⋅L<sup>− 1</sup>, while AA was 0.1-2.0 mg⋅L<sup>− 1</sup>. The detection limit was determined to be 0.05 mg⋅L<sup>− 1</sup> for AA and 0.1 mg⋅L<sup>− 1</sup> for HQ. The recoveries of AA and HQ in cosmetic cream samples ranged from 80 to 110%. The accuracy of the sensor’s measurements was further validated by comparison with the HPLC-DAD method.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"2837 - 2848"},"PeriodicalIF":2.7,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tanawish, Nazish Jahan, Kousar Rasheed, Maria Iqbal, Muhammad Atif
{"title":"Exploring the Advanced Synthesis Strategies and Biomedical Applications of Iron Oxide-Based Nanozymes: A Comprehensive Review","authors":"Tanawish, Nazish Jahan, Kousar Rasheed, Maria Iqbal, Muhammad Atif","doi":"10.1007/s10876-024-02690-1","DOIUrl":"10.1007/s10876-024-02690-1","url":null,"abstract":"<div><p>The practical usage of natural enzymes is limited due to their sensitivity and need for special conditions. On the other hand, nanozymes provide robust catalytic performance, high stability in challenging conditions, economical production, and versatile surface modification. With these benefits, nanozymes surpass the constraints of natural enzymes and are a better option for a range of applications. Iron oxide-based nanomaterials have attracted significant attention due to their distinctive properties, such as catalase-like function under pH seven and peroxidase enzyme activity at acrid pH values as well as higher enzyme-like activities. This study has explored how synthesis procedures have advanced recently, presenting creative approaches with increased stability, regulated particle sizes, and catalytic activities. The potential of iron oxide nanozymes in a range of domains, such as healthcare, hyperthermia, MRI, optical devices, and anticancer activity, has also been investigated. This critical study provides a comprehensive overview of the synthesis, characterization, and potential uses of iron oxide-based nanozymes, identifies the areas where research is currently lacking, and makes options for future directions to maximize its potential in medicine. Overall, this review expands our understanding of iron oxide nanozymes and is a helpful resource for scientists creating novel medicinal and diagnostic tools. </p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"2637 - 2661"},"PeriodicalIF":2.7,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Haroon, Mehwish Nasim, Asif Nawaz, Naveed Ullah Khan, Sheikh Abdur Rashid, Daulat Haleem Khan, Muhammad Khurshid Alam Shah, Mohammad Y. Alfaifi, Serag Eldin I. Elbehairi, Ali A. Shati, Haroon Iqbal
{"title":"Simultaneous Delivery of Dual Anticancer Agents Via pH-Responsive Polymeric Nanoparticles for Enhanced Therapeutic Efficacy Against Breast Cancer Cells","authors":"Muhammad Haroon, Mehwish Nasim, Asif Nawaz, Naveed Ullah Khan, Sheikh Abdur Rashid, Daulat Haleem Khan, Muhammad Khurshid Alam Shah, Mohammad Y. Alfaifi, Serag Eldin I. Elbehairi, Ali A. Shati, Haroon Iqbal","doi":"10.1007/s10876-024-02699-6","DOIUrl":"10.1007/s10876-024-02699-6","url":null,"abstract":"<div><p>The stated objective of the present research investigation was to use a simultaneous nanodrug delivery approach to optimize the therapeutic effectiveness of anticancer drugs against breast cancer cells. For this purpose, Poly (lactic-co-glycolic acid) nanoparticles with two anticancer drugs; methotrexate (MTX) and doxorubicin (DOX) denoted as DOX/MTX@PLGA NPs was developed by nanoprecipitation method. The developed polymeric DOX/MTX@PLGA NPs exhibited hydrodynamic particle diameter of 170.6 ± 10.0 nm with a poly dispersity index (PDI) of 0.17 and zeta potential value of -9.2 ± 0.31 mV, and spherical geometry analyzed by TEM. Furthermore, the nanoparticles exhibited a pH-responsive drug release profile, outstanding encapsulation efficiency, excellent colloidal stability across various physiological media and pH responsive drug release profile. Additionally, polymeric nanoparticles demonstrated higher cell uptake, in-vitro cytotoxicity, and a high rate of apoptosis in comparison to free DOX and MTX through a synergistic effect, likely as a result of their small particle size. In conclusion, our work presents a novel and distinct approach for boosting the therapeutic efficacy of anticancer drugs by delivering drugs to breast cancer cells simultaneously.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"2823 - 2836"},"PeriodicalIF":2.7,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohyeddin Assali, Anhar Mlitat, Abrar Yacoub, Anagheem Hasson, Ahmed Mousa
{"title":"Green Synthesis of Silver Nanoparticles Loaded with Doxorubicin in Polylactide Nanoparticles for Effective Cancer Therapy","authors":"Mohyeddin Assali, Anhar Mlitat, Abrar Yacoub, Anagheem Hasson, Ahmed Mousa","doi":"10.1007/s10876-024-02700-2","DOIUrl":"10.1007/s10876-024-02700-2","url":null,"abstract":"<div><p>Silver nanoparticles (AgNPs) are increasingly recognized as vital nanomaterials in biomedical applications due to their diverse pharmacological properties, including antimicrobial and anti-neoplastic effects, particularly when derived from herbal sources. This study aims to synthesize AgNPs employing a sustainable approach aligned with the principles of the sustainable development goals. The synthesized AgNPs are incorporated with doxorubicin (DOX) and encapsulated within polylactide nanoparticles to enhance their anticancer potency. AgNPs are prepared via the reduction of silver ions using rutin as a reducing agent, with the reaction progress monitored via ultraviolet-visible spectroscopy (UV-vis). Subsequently, the AgNPs are encapsulated into poly(D, L-lactic acid) (PDLLA) nanoparticles alongside doxorubicin. The developed nanoparticles have shown a diameter size of 233 nm with a zeta potential of -21.47 mV. Moreover, the in vitro release profile of the DOX showed a sustained release kinetics over 30 h. Evaluation of the AgNP-DOX-loaded PDLLA nanoparticles reveals enhanced anticancer activity against HeLa and HepG2 cancer cells, highlighting the synergistic efficacy of the combined therapy. These findings underscore the potential of AgNPs-based formulations as promising candidates for advanced cancer therapeutics.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"2813 - 2821"},"PeriodicalIF":2.7,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Prabhuraj, Abimannan Gomathi, Arumugam Priyadharsan, Murni Handayani, Sabah Ansar, K. A. Ramesh Kumar, Palanisamy Maadeswaran
{"title":"Design of a High-Performance WO3/g-C3N4 Z-Scheme Photocatalyst for Effective Phenol Degradation and Antibacterial Activity","authors":"T. Prabhuraj, Abimannan Gomathi, Arumugam Priyadharsan, Murni Handayani, Sabah Ansar, K. A. Ramesh Kumar, Palanisamy Maadeswaran","doi":"10.1007/s10876-024-02692-z","DOIUrl":"10.1007/s10876-024-02692-z","url":null,"abstract":"<div><p>An innovative Z-scheme WO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> composite was efficiently produced via a straightforward hydrothermal method and applied to the photodegradation of phenol. The physiochemical behaviours of WO<sub>3</sub>, g-C<sub>3</sub>N<sub>4</sub>, WO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> composite was analyzed by various analytical instruments. Compared to WO<sub>3</sub>, g-C<sub>3</sub>N<sub>4</sub> single counterparts WO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> Composite exhibits superior charge carriers’ separation efficiency and also Z scheme mechanism promoted the superior pollutant degradation. Subsequently, the WO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> composite achieving 93% with rate constant 0.0184 min<sup>− 1</sup> phenol removal within 100 min. The noteworthy increased photocatalytic bustle of WO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> composite was attributed to the synergetic effect between the boundary of WO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub>. Curiously, WO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> composite validates exceptional photostability during reusable experiment, accentuating its potential as a functioning photocatalyst for phenol removal. The antimicrobial tests showed that the developed photocatalyst effectively sterilizes both gram-positive <i>Staphylococcus aureus</i> and gram-negative <i>Escherichia coli</i>. Thus, the WO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> nanocomposites are robust materials suitable for use as antimicrobial agents and photocatalysts activated by sunlight.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"2753 - 2768"},"PeriodicalIF":2.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}