Journal of Cluster Science最新文献

筛选
英文 中文
Advancing Autonomous Nanomedicine: Bridging the Gap from Concept to Potential Clinical Studies 推进自主纳米医学:缩小从概念到潜在临床研究的差距
IF 2.7 4区 化学
Journal of Cluster Science Pub Date : 2024-09-06 DOI: 10.1007/s10876-024-02691-0
Diya Pratish Chohan, Bipasa Dey, Arshia Tarkunde, Vaishnavi Vyas, Srijita De Sarkar, Babitha Kampa Sundara
{"title":"Advancing Autonomous Nanomedicine: Bridging the Gap from Concept to Potential Clinical Studies","authors":"Diya Pratish Chohan,&nbsp;Bipasa Dey,&nbsp;Arshia Tarkunde,&nbsp;Vaishnavi Vyas,&nbsp;Srijita De Sarkar,&nbsp;Babitha Kampa Sundara","doi":"10.1007/s10876-024-02691-0","DOIUrl":"10.1007/s10876-024-02691-0","url":null,"abstract":"<div><p>Autonomous nanomedicine, a burgeoning field within nanotechnology and biomedical sciences, is poised to revolutionize healthcare by eliminating the need for external intervention in targeted applications within the body. This article elucidates the promise and challenges of autonomous nanomedicine, emphasizing its ability to overcome the limitations of traditional methods such as chemotherapy and radiotherapy. Central to its efficacy are nano-sized carriers, which autonomously navigate the body to deliver therapeutic agents with precision and control. By integrating automated nanoscale tools into disease detection processes, this technology offers swift and personalized assessments, reshaping disease management paradigms. To advance the clinical translation of autonomous nanomedicine, rigorous preclinical studies are imperative. However, challenges persist in ensuring reproducibility and safety, hindering progress in clinical trials. This article examines current studies with potential clinical translation, shedding light on the regulatory and ethical considerations crucial for its safe implementation. As the field progresses, maintaining a balance between innovation and safety remains paramount for harnessing the full potential of autonomous nanomedicine while safeguarding patient well-being.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"2607 - 2635"},"PeriodicalIF":2.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10876-024-02691-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Nanoparticles Prepared from Starch-Myristic Acid Complex Ethyl Acetate Fraction: Impact on Gene Expression in Human Mesenchymal Stem Cells 更正:用淀粉-肉豆蔻酸复合醋酸乙酯馏分制备纳米颗粒:对人类间充质干细胞基因表达的影响
IF 2.7 4区 化学
Journal of Cluster Science Pub Date : 2024-09-03 DOI: 10.1007/s10876-024-02684-z
Mushawah Abdullah Almushawah, Jegan Athinarayanan, Vaiyapuri Subbarayan Periasamy, Ghedeir Alshammari, Ali A Alshatwi
{"title":"Correction: Nanoparticles Prepared from Starch-Myristic Acid Complex Ethyl Acetate Fraction: Impact on Gene Expression in Human Mesenchymal Stem Cells","authors":"Mushawah Abdullah Almushawah,&nbsp;Jegan Athinarayanan,&nbsp;Vaiyapuri Subbarayan Periasamy,&nbsp;Ghedeir Alshammari,&nbsp;Ali A Alshatwi","doi":"10.1007/s10876-024-02684-z","DOIUrl":"10.1007/s10876-024-02684-z","url":null,"abstract":"","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"3181 - 3181"},"PeriodicalIF":2.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical Prediction of the Smallest Sized Tricyclic-Boron Oxide B6O62+ 最小尺寸三环氧化硼 B6O62+ 的理论预测
IF 2.7 4区 化学
Journal of Cluster Science Pub Date : 2024-08-27 DOI: 10.1007/s10876-024-02687-w
Wen-Juan Tian, Jing-Jing Wang, Hui-Li Chen
{"title":"Theoretical Prediction of the Smallest Sized Tricyclic-Boron Oxide B6O62+","authors":"Wen-Juan Tian,&nbsp;Jing-Jing Wang,&nbsp;Hui-Li Chen","doi":"10.1007/s10876-024-02687-w","DOIUrl":"10.1007/s10876-024-02687-w","url":null,"abstract":"<div><p>The discovery of cyclic boron oxide clusters has prompted investigations into their distinctive structures and bonding characteristics. Notably, the majority of reported cyclic boron oxide structures consist predominantly of four to six-membered rings. In this study, we employ theoretical methods to predict the global-minimum (GM) structure of B<sub>6</sub>O<sub>6</sub><sup>2+</sup>. Our analyses, including global-minimum searches and calculations using B3LYP, PBE, PBE0, and single-point CCSD(T), reveal that the <i>D</i><sub>2<i>h</i></sub> B<sub>6</sub>O<sub>6</sub><sup>2+</sup> (<sup>1</sup>A<sub>g</sub>) configuration represents a planar and tricyclic structure, resulting from the fusion of B<sub>3</sub>O<sub>2</sub>/B<sub>4</sub>O<sub>2</sub>/B<sub>3</sub>O<sub>2</sub> units. Remarkably, this structure establishes the B<sub>6</sub>O<sub>6</sub><sup>2+</sup> cluster as the smallest boron oxide cluster with a planar tricyclic motif. Further bonding analysis indicates that B<sub>6</sub>O<sub>6</sub><sup>2+</sup> is a weakly antiaromatic system with 12π delocalized electrons. The reported B<sub>6</sub>O<sub>6</sub> has a planar structure with a 6-membered B<sub>3</sub>O<sub>3</sub> ring and 6 π electrons distributed over the ring. Because of the absence of two electrons from the highest occupied molecular orbital (HOMO) of neutral B<sub>6</sub>O<sub>6</sub>, the structure of B<sub>6</sub>O<sub>6</sub><sup>2+</sup> is distinctly different from that of B<sub>6</sub>O<sub>6</sub>.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"2747 - 2752"},"PeriodicalIF":2.7,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Wound Healing Activity in Animal Model via Developing and Designing of Self-nano Emulsifying Drug Delivery System (SNEDDS) for the Co-delivery of Hesperidin and Rutin 通过开发和设计用于橙皮甙和芦丁联合给药的自纳米乳化给药系统(SNEDDS)增强动物模型的伤口愈合活性
IF 2.7 4区 化学
Journal of Cluster Science Pub Date : 2024-08-25 DOI: 10.1007/s10876-024-02679-w
Ajmal Hayat, Ismail Shah, Abdul Jabbar, Ayman Nafady, Aziz Balouch, Muhammad Raza Shah, Sayyed Ibrahim Shah, Razium Ali Soomro,  Sirajuddin
{"title":"Enhanced Wound Healing Activity in Animal Model via Developing and Designing of Self-nano Emulsifying Drug Delivery System (SNEDDS) for the Co-delivery of Hesperidin and Rutin","authors":"Ajmal Hayat,&nbsp;Ismail Shah,&nbsp;Abdul Jabbar,&nbsp;Ayman Nafady,&nbsp;Aziz Balouch,&nbsp;Muhammad Raza Shah,&nbsp;Sayyed Ibrahim Shah,&nbsp;Razium Ali Soomro,&nbsp; Sirajuddin","doi":"10.1007/s10876-024-02679-w","DOIUrl":"10.1007/s10876-024-02679-w","url":null,"abstract":"<div><p>The aim of this work is to develop a self-nanoemulsifying drug delivery system (SNEDDS) for Hesperidin (HES) and Rutin (RUT) to improve their biopharmaceutical properties. The wound healing potential of HES-RUT-SNEDDS was compared to those of pure HES suspension (HES-s), empty SNEDDS (E-SNEDDS), and standard Fusidic Acid via topical application. To produce various HES-RUT-loaded SNEDDS, aqueous phase titration was used to select cinnamon oil, Labrasol and Tween 80 (surfactants), Transcutol (co-surfactant) from a diverse pool of surfactants, oils and co-surfactants. The thermodynamic stability of HES-RUT-loaded SNEDDS was assessed by examining the globule size, surface morphology, zeta potential, polydispersity index (PDI), and percent (%) transmittance. The improved physicochemical properties of the optimized HES-RUT-SNEDDS (S-N4) formulation included particle size, zeta potential, and % transmittance. Smooth and spherical particles were discovered using Atomic Force Microscopy (AFM). These improved SNEDDS formulations demonstrated enhanced solubility and skin permeation. When compared to HES-s, E-SNEDDS, and standard fusidic acid, the optimized HES-RUT-SNEDDS demonstrated significant wound healing activity following topical application. HES-RUT-SNEDDS is a promising approach for enhancing the wound-healing potential of HES and RUT through topical administration.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"2721 - 2734"},"PeriodicalIF":2.7,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluorescent Nanoprobe Utilizing Tryptophan-Functionalized Silver Nanoclusters for Enhanced Gemcitabine Detection: Optimization and Application in Real Samples 利用色氨酸功能化银纳米簇增强吉西他滨检测的荧光纳米探针:在真实样品中的优化与应用
IF 2.7 4区 化学
Journal of Cluster Science Pub Date : 2024-08-25 DOI: 10.1007/s10876-024-02682-1
Yahya S. Alqahtani, Ashraf M. Mahmoud, Al-Montaser Bellah H. Ali, Mohamed M. El-Wekil
{"title":"Fluorescent Nanoprobe Utilizing Tryptophan-Functionalized Silver Nanoclusters for Enhanced Gemcitabine Detection: Optimization and Application in Real Samples","authors":"Yahya S. Alqahtani,&nbsp;Ashraf M. Mahmoud,&nbsp;Al-Montaser Bellah H. Ali,&nbsp;Mohamed M. El-Wekil","doi":"10.1007/s10876-024-02682-1","DOIUrl":"10.1007/s10876-024-02682-1","url":null,"abstract":"<div><p>A new “signal-off” probe based on silver nanoclusters modified with tryptophan amino acid (TRP@Ag NCs) has been developed for the sensitive and selective fluorometric detection of the anticancer drug gemcitabine. The probe exhibits a blue-emission at 460 nm upon excitation at 320 nm. Various reaction parameters were optimized to enhance the probe’s performance. The addition of gemcitabine results in a decrease in the fluorescence emission, which is attributed to the aggregation of the TRP@Ag NCs. The interaction between the TRP@Ag NCs and gemcitabine involves multiple types of chemical bonds, including non-covalent hydrogen bonding, Van der Waals, and electrostatic forces. The fluorescence ratio (F°/F) exhibits a linear correlation with gemcitabine concentrations ranging from 0.005 to 60 µM, with a low limit of detection (LOD) of 1.7 nM (S/<i>N</i> = 3). The TRP@Ag NCs probe demonstrates high sensitivity, good selectivity, and reliability. The developed probe was successfully applied for the detection of gemcitabine in authentic samples, including pharmaceutical injections, serum, and urine, with acceptable recovery percentages and low relative standard deviation (RSD), indicating the accuracy and reliability of the probe.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"2735 - 2745"},"PeriodicalIF":2.7,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Z-Scheme g-C3N4/TiO2/NiCo2O4 Heterojunctions for Efficient Photocatalytic Degradation of Rhodamine B under Visible Light Irradiation 新型 Z 型结构 g-C3N4/TiO2/NiCo2O4 异质结在可见光照射下高效光催化降解罗丹明 B
IF 2.7 4区 化学
Journal of Cluster Science Pub Date : 2024-08-14 DOI: 10.1007/s10876-024-02688-9
Aws Hamza, Hassan Alshamsi
{"title":"Novel Z-Scheme g-C3N4/TiO2/NiCo2O4 Heterojunctions for Efficient Photocatalytic Degradation of Rhodamine B under Visible Light Irradiation","authors":"Aws Hamza,&nbsp;Hassan Alshamsi","doi":"10.1007/s10876-024-02688-9","DOIUrl":"10.1007/s10876-024-02688-9","url":null,"abstract":"<div><p>In this study, a novel Z-scheme heterojunction based on g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub>/NiCo<sub>2</sub>O<sub>4</sub> nanocomposite was synthesized using a combination of hydrothermal and ultrasonic methods and investigated the photocatalytic degradation of Rhodamine B (RhB) dye. The synthesized nanocomposite was characterized XRD, FT-IR, FE-SEM, TEM, EDS, PL, UV–Vis DRS techniques. Subsequently, various parameters such as the effect of NiCo<sub>2</sub>O<sub>4</sub> amount in the composite structure, pH, initial pollutant concentration, photocatalyst dosage, and different scavengers were investigated to determine the exact mechanism of the photocatalytic process. In different concentrations of NiCo<sub>2</sub>O<sub>4</sub>, the base value (X: 1) was determined as the optimal value in photocatalytic degradation. g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub>/NiCo<sub>2</sub>O<sub>4</sub> composite had the highest percentage of 99.5% Rh.B dye degradation in 60 min. In addition, by examining the pH, it was found that its optimal value is 7, and the rate of dye degradation in this condition is more than other materials, and the rate constant value is 0.069 min<sup>–1</sup>. In addition, the g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub>/NiCo<sub>2</sub>O<sub>4</sub> catalyst showed good performance for each reuse and retained about 82% of its initial photocatalytic activity after 5 cycles. The results indicate that photoinducd (RhB) holes play a crucial role in the photocatalytic degradation of RhB in the presence of the g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub>/NiCo<sub>2</sub>O<sub>4</sub> nanocomposite via pair Z-scheme system. In the Z-scheme system, the rapid recombination between the hole-electron pair is not observed due to the electron trapping effect of the needle-shaped NiCo<sub>2</sub>O<sub>4</sub> structure, resulting in high photocatalytic efficiency and dye degradation. Therefore, Z-scheme systems are efficient and effective for the removal of water pollutants.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 7","pages":"2539 - 2556"},"PeriodicalIF":2.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical Biosensing of SARS-CoV-2 RNA Based on Positively Charged Poly-l-Lysine Functionalized Gold Nanoparticles 基于带正电荷的聚赖氨酸功能化金纳米粒子的 SARS-CoV-2 RNA 光学生物传感技术
IF 2.7 4区 化学
Journal of Cluster Science Pub Date : 2024-08-09 DOI: 10.1007/s10876-024-02678-x
Tejaswini P. Patil, Arun Kumar Parthasarathy, Dhanaji Malavekar, JinHyeok Kim, Arpita P. Tiwari
{"title":"Optical Biosensing of SARS-CoV-2 RNA Based on Positively Charged Poly-l-Lysine Functionalized Gold Nanoparticles","authors":"Tejaswini P. Patil,&nbsp;Arun Kumar Parthasarathy,&nbsp;Dhanaji Malavekar,&nbsp;JinHyeok Kim,&nbsp;Arpita P. Tiwari","doi":"10.1007/s10876-024-02678-x","DOIUrl":"10.1007/s10876-024-02678-x","url":null,"abstract":"<div><p>The World Health Organization (WHO) announced corona virus disease 2019 (COVID-19) caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), a serious pandemic in March 2020. The situation demands, development of rapid, convenient and easy to handle detection system for SARS-CoV-2. In this regard, the optical biosensing assay was developed using antisense oligonucleotide (ASO) conjugated Poly-<span>l</span>-Lysine functionalized gold nanoparticles (PLL-AuNPs) for detection of SARS-CoV-2 RNA. The negatively charged ASOs were conjugated with positively charged PLL-AuNPs by electrostatic interactions which were characterized by UV–Vis spectroscopy and Transmission Electron Microscopy (TEM). ASO-PLL-AuNPs conjugate was used to detect target SARS-CoV-2 RNA within 5–6 min from COVID-19 positive samples. In presence of target SARS-CoV-2 RNA, the DNA-RNA (ASO-RNA) hybrid structure was formed that released PLL-AuNPs which was aggregated in presence of sodium chloride (NaCl). This has rendered observable red shift in Surface Plasmon Resonance (SPR) with maximum absorbance at 660 nm and visual aggregation of PLL-AuNPs. Selectivity of ASO-PLL-AuNPs conjugate was evaluated in presence of Influenza A RNA with limit of detection 0.52 ng/µL. The obtained results were compared with qRT-PCR results for nasopharyngeal samples collected from COVID-19 positive patients and were found in good agreement with qRT-PCR results. This study reports selective and sensitive optical biosensing assay for detection of SARS-CoV-2 RNA using ASO-PLL-AuNPs conjugate without utilization of any sophisticated instruments.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 7","pages":"2525 - 2538"},"PeriodicalIF":2.7,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141925370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silver Ions Modified α-Fe2O3 Nanoparticles: An Efficient Antibacterial Agent for Multidrug Resistant Bacteria 银离子修饰的 α-Fe2O3 纳米粒子:针对耐多药细菌的高效抗菌剂
IF 2.7 4区 化学
Journal of Cluster Science Pub Date : 2024-08-08 DOI: 10.1007/s10876-024-02680-3
Ritesh Verma, Satheesh Selvaraj, Ankush Chauhan, Rajasekaran Subbarayan, G. S. Hikku, Aaliya Ali, Preeti Thakur, Atul Thakur
{"title":"Silver Ions Modified α-Fe2O3 Nanoparticles: An Efficient Antibacterial Agent for Multidrug Resistant Bacteria","authors":"Ritesh Verma,&nbsp;Satheesh Selvaraj,&nbsp;Ankush Chauhan,&nbsp;Rajasekaran Subbarayan,&nbsp;G. S. Hikku,&nbsp;Aaliya Ali,&nbsp;Preeti Thakur,&nbsp;Atul Thakur","doi":"10.1007/s10876-024-02680-3","DOIUrl":"10.1007/s10876-024-02680-3","url":null,"abstract":"<div><p>Herein, silver ions modified α-Fe<sub>2</sub>O<sub>3</sub> (Ag: α-Fe<sub>2</sub>O<sub>3</sub>) nanoparticles were synthesized using a sol-gel auto-combustion method comprising of dual phase i.e. trigonal structure of α-Fe<sub>2</sub>O<sub>3</sub> and FCC structure of Ag. The refinement results verified the existence of both the phase with <i>R-3c: R</i> s and <i>Fm-3 m</i> space group. Transmission Electron Microscopy (TEM) showed the crystallite size around 34.24 ± 2.00 nm. The percentage of Ag<sup>0</sup> and Ag<sup>+</sup> verified through X-ray Photoelectron Spectroscopy (XPS) clearly indicate that around 74% of the Ag present is in the metallic form. The cyclic voltammetry showed that the C<sub>sp</sub> of the Ag: α-Fe<sub>2</sub>O<sub>3</sub> NPs modified electrode is 132 Fg <sup>− 1</sup> and 100 Fg <sup>− 1</sup> when recorded at a scan rate of 50 mVs<sup>− 1</sup> and 75 mVs<sup>− 1</sup>, respectively. The Zones of Inhibition (ZOI) against bacterial strains generated by utilizing Ag: α-Fe<sub>2</sub>O<sub>3</sub> NPs are clearly showed the ZOI of 19 ± 1 mm against <i>Bacillus subtilis</i>. The synthesized nanoparticles exhibited higher inhibition against the bacterial strains in comparison to the standard antibiotic ampicillin. Further, cell viability analysis suggested to use a concentration of 9 to 12 µg/ml for Ag: α-Fe<sub>2</sub>O<sub>3</sub>in invitro experiments.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 7","pages":"2511 - 2523"},"PeriodicalIF":2.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141927350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Photocatalytic Degradation of Crystal Violet Using SnO2/ZnO Nanocomposite Synthesized by Facile Sol-Gel Method 更正为利用便捷溶胶-凝胶法合成的 SnO2/ZnO 纳米复合材料光催化降解水晶紫
IF 2.7 4区 化学
Journal of Cluster Science Pub Date : 2024-08-08 DOI: 10.1007/s10876-024-02683-0
S. Shabna, J. Eugin Shaji, S. Sahaya Jude Dhas, S. Suresh, Arun Aravind, Susmi Anna Thomas, V. Sherlin Vinita, J. Samuel, C. S. Biju
{"title":"Correction to: Photocatalytic Degradation of Crystal Violet Using SnO2/ZnO Nanocomposite Synthesized by Facile Sol-Gel Method","authors":"S. Shabna,&nbsp;J. Eugin Shaji,&nbsp;S. Sahaya Jude Dhas,&nbsp;S. Suresh,&nbsp;Arun Aravind,&nbsp;Susmi Anna Thomas,&nbsp;V. Sherlin Vinita,&nbsp;J. Samuel,&nbsp;C. S. Biju","doi":"10.1007/s10876-024-02683-0","DOIUrl":"10.1007/s10876-024-02683-0","url":null,"abstract":"","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 7","pages":"2605 - 2605"},"PeriodicalIF":2.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction Note: Near Infrared Light-Actuated PEG Wrapping Carbon Nanodots Loaded Cisplatin for Targeted Therapy of Lung Cancer Therapy 撤稿说明:用于肺癌靶向治疗的近红外光动PEG包裹碳纳米点载顺铂疗法
IF 2.7 4区 化学
Journal of Cluster Science Pub Date : 2024-08-07 DOI: 10.1007/s10876-024-02685-y
Chan Lian, Jiangnan Zhang, Bingqing Ruan, Kangtai Ying, Wei Lin, Zhe Chen
{"title":"Retraction Note: Near Infrared Light-Actuated PEG Wrapping Carbon Nanodots Loaded Cisplatin for Targeted Therapy of Lung Cancer Therapy","authors":"Chan Lian,&nbsp;Jiangnan Zhang,&nbsp;Bingqing Ruan,&nbsp;Kangtai Ying,&nbsp;Wei Lin,&nbsp;Zhe Chen","doi":"10.1007/s10876-024-02685-y","DOIUrl":"10.1007/s10876-024-02685-y","url":null,"abstract":"","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 7","pages":"2603 - 2603"},"PeriodicalIF":2.7,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142409232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信