类似苯的芳香硼水配合物B13(H2O)n+ (n = 1,2)和B12H(H2O)+中硼键的观察

IF 3.6 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Ting Zhang, Rui-Nan Yuan, Qiang Chen, Si-Dian Li
{"title":"类似苯的芳香硼水配合物B13(H2O)n+ (n = 1,2)和B12H(H2O)+中硼键的观察","authors":"Ting Zhang,&nbsp;Rui-Nan Yuan,&nbsp;Qiang Chen,&nbsp;Si-Dian Li","doi":"10.1007/s10876-025-02897-w","DOIUrl":null,"url":null,"abstract":"<div><p>Gas-phase B<sub><i>n</i></sub><sup>+</sup> monocations exhibit strong hydrophilicity due to the prototypical electron-deficiency of boron. Joint chemisorption experiment and first-principles theory investigations performed herein indicate that the experimentally known planar magic-number <i>C</i><sub>2<i>v</i></sub> B<sub>13</sub><sup>+</sup> can react with H<sub>2</sub>O at room temperature to form a series of quasi-planar aromatic boron water complexes <i>C</i><sub>1</sub> B<sub>13</sub>(H<sub>2</sub>O)<sup>+</sup> (<b>1</b>), <i>C</i><sub>2</sub> B<sub>13</sub>(H<sub>2</sub>O)<sub>2</sub><sup>+</sup> (<b>2</b>), and <i>C</i><sub>1</sub> B<sub>12</sub>H(H<sub>2</sub>O)<sup>+</sup> (<b>3</b>) analogous to benzene C<sub>6</sub>H<sub>6</sub>. Extensive theoretical calculations and analyses unveil their chemisorption pathways, bonding patterns, and more importantly, the effective in-phase LP(H<sub>2</sub>O:)→LV(B) orbital overlaps between the more electronegative O atom in H<sub>2</sub>O as lone-pair (LP) σ-donor and periphery electron-deficient B atoms in B<sub>13</sub><sup>+</sup> (B<sub>3</sub>@B<sub>10</sub><sup>+</sup>) and B<sub>12</sub>H<sup>+</sup> (B<sub>3</sub>@B<sub>9</sub>H<sup>+</sup>) with lone vacant (LV) orbitals as LP σ-acceptors, evidencing the existence of the newly proposed boron bonds in chemistry. A LP(H<sub>2</sub>O:)→LV(B) boron bond in these boron water complexes possesses about 15 ~ 20% of the dissociation energy of a typical O–B covalent bond. Boron bonds are expected to exist in a wide range of boron-based complex systems with typical molecular ligands like H<sub>2</sub>O, CO, and NH<sub>3</sub> as effective σ-donors.</p><h3>Graphical Abstract</h3><p>Joint chemisorption experiment and first-principles theory investigations indicate that B<sub>13</sub><sup>+</sup> monocation can react with H<sub>2</sub>O to form a series of quasi-planar aromatic boron water complexes <i>C</i><sub>1</sub> B<sub>13</sub>(H<sub>2</sub>O)<sup>+</sup>, <i>C</i><sub>2</sub> B<sub>13</sub>(H<sub>2</sub>O)<sub>2</sub><sup>+</sup>, and <i>C</i><sub>1</sub> B<sub>12</sub>H(H<sub>2</sub>O)<sup>+</sup> analogous to benzene, evidencing the existence of boron bonds in chemistry.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 5","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observation of Boron Bonds in Aromatic Boron Water Complexes B13(H2O)n+ (n = 1,2) and B12H(H2O)+ Analogous to Benzene\",\"authors\":\"Ting Zhang,&nbsp;Rui-Nan Yuan,&nbsp;Qiang Chen,&nbsp;Si-Dian Li\",\"doi\":\"10.1007/s10876-025-02897-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gas-phase B<sub><i>n</i></sub><sup>+</sup> monocations exhibit strong hydrophilicity due to the prototypical electron-deficiency of boron. Joint chemisorption experiment and first-principles theory investigations performed herein indicate that the experimentally known planar magic-number <i>C</i><sub>2<i>v</i></sub> B<sub>13</sub><sup>+</sup> can react with H<sub>2</sub>O at room temperature to form a series of quasi-planar aromatic boron water complexes <i>C</i><sub>1</sub> B<sub>13</sub>(H<sub>2</sub>O)<sup>+</sup> (<b>1</b>), <i>C</i><sub>2</sub> B<sub>13</sub>(H<sub>2</sub>O)<sub>2</sub><sup>+</sup> (<b>2</b>), and <i>C</i><sub>1</sub> B<sub>12</sub>H(H<sub>2</sub>O)<sup>+</sup> (<b>3</b>) analogous to benzene C<sub>6</sub>H<sub>6</sub>. Extensive theoretical calculations and analyses unveil their chemisorption pathways, bonding patterns, and more importantly, the effective in-phase LP(H<sub>2</sub>O:)→LV(B) orbital overlaps between the more electronegative O atom in H<sub>2</sub>O as lone-pair (LP) σ-donor and periphery electron-deficient B atoms in B<sub>13</sub><sup>+</sup> (B<sub>3</sub>@B<sub>10</sub><sup>+</sup>) and B<sub>12</sub>H<sup>+</sup> (B<sub>3</sub>@B<sub>9</sub>H<sup>+</sup>) with lone vacant (LV) orbitals as LP σ-acceptors, evidencing the existence of the newly proposed boron bonds in chemistry. A LP(H<sub>2</sub>O:)→LV(B) boron bond in these boron water complexes possesses about 15 ~ 20% of the dissociation energy of a typical O–B covalent bond. Boron bonds are expected to exist in a wide range of boron-based complex systems with typical molecular ligands like H<sub>2</sub>O, CO, and NH<sub>3</sub> as effective σ-donors.</p><h3>Graphical Abstract</h3><p>Joint chemisorption experiment and first-principles theory investigations indicate that B<sub>13</sub><sup>+</sup> monocation can react with H<sub>2</sub>O to form a series of quasi-planar aromatic boron water complexes <i>C</i><sub>1</sub> B<sub>13</sub>(H<sub>2</sub>O)<sup>+</sup>, <i>C</i><sub>2</sub> B<sub>13</sub>(H<sub>2</sub>O)<sub>2</sub><sup>+</sup>, and <i>C</i><sub>1</sub> B<sub>12</sub>H(H<sub>2</sub>O)<sup>+</sup> analogous to benzene, evidencing the existence of boron bonds in chemistry.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":618,\"journal\":{\"name\":\"Journal of Cluster Science\",\"volume\":\"36 5\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cluster Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10876-025-02897-w\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-025-02897-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

由于硼的典型缺电子,气相Bn+单位态表现出较强的亲水性。联合化学吸附实验和第一性原理理论研究表明,实验已知的平面幻数C2v B13+可以在室温下与H2O反应形成一系列类似于苯C6H6的准平面芳香硼水配合物C1 B13(H2O)+(1)、C2 B13(H2O)2+(2)和C1 B12H(H2O)+(3)。广泛的理论计算和分析揭示了它们的化学吸附途径和成键模式,更重要的是,有效的同相LP(H2O:)→LV(B)轨道重叠在H2O中电负性较强的O原子作为孤对(LP) σ-供体和B13+ (B3@B10+)和B12H+ (B3@B9H+)中外围缺电子的B原子以孤空(LV)轨道作为LP σ-受体之间,证明了化学中新提出的硼键的存在。在这些硼水配合物中,一个LP(H2O:)→LV(B)硼键的解离能约为典型O-B共价键的15 ~ 20%。硼键广泛存在于以H2O、CO、NH3等典型分子配体为有效的σ给体的硼基配合体系中。联合化学吸附实验和第一性原理研究表明,B13+单位化能与H2O反应形成一系列类似于苯的准平面芳香硼水配合物C1 B13(H2O)+、C2 B13(H2O)2+和C1 B12H(H2O)+,证明了化学中硼键的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Observation of Boron Bonds in Aromatic Boron Water Complexes B13(H2O)n+ (n = 1,2) and B12H(H2O)+ Analogous to Benzene

Observation of Boron Bonds in Aromatic Boron Water Complexes B13(H2O)n+ (n = 1,2) and B12H(H2O)+ Analogous to Benzene

Observation of Boron Bonds in Aromatic Boron Water Complexes B13(H2O)n+ (n = 1,2) and B12H(H2O)+ Analogous to Benzene

Gas-phase Bn+ monocations exhibit strong hydrophilicity due to the prototypical electron-deficiency of boron. Joint chemisorption experiment and first-principles theory investigations performed herein indicate that the experimentally known planar magic-number C2v B13+ can react with H2O at room temperature to form a series of quasi-planar aromatic boron water complexes C1 B13(H2O)+ (1), C2 B13(H2O)2+ (2), and C1 B12H(H2O)+ (3) analogous to benzene C6H6. Extensive theoretical calculations and analyses unveil their chemisorption pathways, bonding patterns, and more importantly, the effective in-phase LP(H2O:)→LV(B) orbital overlaps between the more electronegative O atom in H2O as lone-pair (LP) σ-donor and periphery electron-deficient B atoms in B13+ (B3@B10+) and B12H+ (B3@B9H+) with lone vacant (LV) orbitals as LP σ-acceptors, evidencing the existence of the newly proposed boron bonds in chemistry. A LP(H2O:)→LV(B) boron bond in these boron water complexes possesses about 15 ~ 20% of the dissociation energy of a typical O–B covalent bond. Boron bonds are expected to exist in a wide range of boron-based complex systems with typical molecular ligands like H2O, CO, and NH3 as effective σ-donors.

Graphical Abstract

Joint chemisorption experiment and first-principles theory investigations indicate that B13+ monocation can react with H2O to form a series of quasi-planar aromatic boron water complexes C1 B13(H2O)+, C2 B13(H2O)2+, and C1 B12H(H2O)+ analogous to benzene, evidencing the existence of boron bonds in chemistry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信