Frontiers of Materials Science最新文献

筛选
英文 中文
Hydrogel-supported poly(L-lactic acid) and polystyrene microsphere-based three-dimensional culture systems for in vitro cell expansion 用于体外细胞扩增的水凝胶支撑聚(L-乳酸)和聚苯乙烯微球基三维培养系统
IF 2.5 4区 材料科学
Frontiers of Materials Science Pub Date : 2024-06-06 DOI: 10.1007/s11706-024-0682-z
Huaying Hao, Lihong Sun, Jiaxuan Chen, Jun Liang
{"title":"Hydrogel-supported poly(L-lactic acid) and polystyrene microsphere-based three-dimensional culture systems for in vitro cell expansion","authors":"Huaying Hao,&nbsp;Lihong Sun,&nbsp;Jiaxuan Chen,&nbsp;Jun Liang","doi":"10.1007/s11706-024-0682-z","DOIUrl":"10.1007/s11706-024-0682-z","url":null,"abstract":"<div><p>The <i>in vitro</i> expansion of stem cells is important for their application in different life science fields such as cellular tissue and organ repair. An objective of this paper was to achieve static cell culture <i>in vitro</i> through peptide hydrogel-supported microspheres (MSs). The peptides, with their gel-forming properties, microstructures, and mechanical strengths characterized, were found to have good support for the MSs and to be injectable. The internal structures of poly(L-lactic acid) microspheres (PLLA-MSs) and polystyrene microspheres (PS-MSs) made in the laboratory were observed and statistically analyzed in terms of particle size and pore size, following which the co-cultured MSs with cells were found to have good cell adhesion. In addition, three-dimensional (3D) culturing of cells was performed on the peptide and microcarrier composite scaffolds to measure cell viability and cell proliferation. The results showed that the peptides could be stimulated by the culture medium to self-assembly form a 3D fiber network structure. Under the peptide-MS composite scaffold-based cell culture system, further enhancement of the cell culture effect was measured. The peptide-MS composite scaffolds have great potential for the application in 3D cell culture and <i>in vitro</i> cell expansion.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 2","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141395509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alkaline zinc-based flow battery: chemical stability, morphological evolution, and performance of zinc electrode with ionic liquid 碱性锌基液流电池:锌电极与离子液体的化学稳定性、形态演变和性能
IF 2.5 4区 材料科学
Frontiers of Materials Science Pub Date : 2024-05-22 DOI: 10.1007/s11706-024-0681-0
Tianyong Mao, Jing Dai, Meiqing Xin, Deliang Zeng, Zhipeng Xie
{"title":"Alkaline zinc-based flow battery: chemical stability, morphological evolution, and performance of zinc electrode with ionic liquid","authors":"Tianyong Mao,&nbsp;Jing Dai,&nbsp;Meiqing Xin,&nbsp;Deliang Zeng,&nbsp;Zhipeng Xie","doi":"10.1007/s11706-024-0681-0","DOIUrl":"10.1007/s11706-024-0681-0","url":null,"abstract":"<div><p>Zinc-based flow battery is an energy storage technology with good application prospects because of its advantages of abundant raw materials, low cost, and environmental friendliness. The chemical stability of zinc electrodes exposed to electrolyte is a very important issue for zinc-based batteries. This paper reports on details of chemical stability of the zinc metal exposed to a series of solutions, as well as the relationship between the morphological evolution of zinc electrodes and their properties in an alkaline medium. Chemical corrosion of zinc electrodes by the electrolyte will change their surface morphology. However, we observed that chemical corrosion is not the main contributor to the evolution of zinc electrode surface morphology, but the main contributor is the Zn/Zn<sup>2+</sup> electrode process. The morphological evolution of zinc electrodes was controlled by using ionic liquids, 1-ethyl-3-methylimidazolium acetate (EMIA), and 1-propylsulfonic-3-methylimidazolium tosylate (PSMIT), and the electrode performance was recorded during the morphological evolution process. It was observed that the reversible change of zinc electrode morphology was accompanied by better electrode performance.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141149320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of porous flower-like SnO2/CdSnO3 microstructures with excellent sensing performances for volatile organic compounds 合成具有优异挥发性有机化合物传感性能的多孔花状 SnO2/CdSnO3 微结构
IF 2.5 4区 材料科学
Frontiers of Materials Science Pub Date : 2024-05-13 DOI: 10.1007/s11706-024-0677-9
Jie Wan, Gang Wang, Haibo Ren, Jiarui Huang, Sang Woo Joo
{"title":"Synthesis of porous flower-like SnO2/CdSnO3 microstructures with excellent sensing performances for volatile organic compounds","authors":"Jie Wan,&nbsp;Gang Wang,&nbsp;Haibo Ren,&nbsp;Jiarui Huang,&nbsp;Sang Woo Joo","doi":"10.1007/s11706-024-0677-9","DOIUrl":"10.1007/s11706-024-0677-9","url":null,"abstract":"<div><p>Porous flower-like SnO<sub>2</sub>/CdSnO<sub>3</sub> microstructures self-assembled by uniform nanosheets were synthesized using a hydrothermal process followed by calcination, and the sensing performance was measured when a gas sensor, based on such microstructures, was exposed to various volatile organic compound (VOC) gases. The response value was found to reach as high as 100.1 when the SnO<sub>2</sub>/CdSnO<sub>3</sub> sensor was used to detect 100 ppm formaldehyde gas, much larger than those of other tested VOC gases, indicating the high gas sensitivity possessed by this sensor especially in the detection of formaldehyde gas. Meanwhile, the response/recovery process was fast with the response time and recovery time of only 13 and 21 s, respectively. The excellent gas sensing performance derive from the advantages of SnO<sub>2</sub>/CdSnO<sub>3</sub>, such as abundant n–n heterojunctions built at the interface, high available specific surface area, abundant porosity, large pore size, and rich reactive oxygen species, as well as joint effects arising from SnO<sub>2</sub> and CdSnO<sub>3</sub>, suggesting that such porous flower-like SnO<sub>2</sub>/CdSnO<sub>3</sub> microstructures composed of nanosheets have a high potential for developing gas sensors.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140940251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A high-performance electrochromic device assembled with WO3/Ag and TiO2/NiO composite electrodes towards smart window 用 WO3/Ag 和 TiO2/NiO 复合电极组装的高性能电致变色装置,可用于智能窗户
IF 2.5 4区 材料科学
Frontiers of Materials Science Pub Date : 2024-05-13 DOI: 10.1007/s11706-024-0674-z
Haorui Liu, Jikai Yang, Decai Nie, Chunlei Liu, Liumenghan Zheng, Yining Mu, Weijun Chen
{"title":"A high-performance electrochromic device assembled with WO3/Ag and TiO2/NiO composite electrodes towards smart window","authors":"Haorui Liu,&nbsp;Jikai Yang,&nbsp;Decai Nie,&nbsp;Chunlei Liu,&nbsp;Liumenghan Zheng,&nbsp;Yining Mu,&nbsp;Weijun Chen","doi":"10.1007/s11706-024-0674-z","DOIUrl":"10.1007/s11706-024-0674-z","url":null,"abstract":"<div><p>The choice of cathode and anode materials for electrochromic devices plays a key role in the performance of electrochromic smart windows. In this research, WO<sub>3</sub>/Ag and TiO<sub>2</sub>/NiO composite thin films were separately prepared by the hydrothermal method combined with electrodeposition. The electrochromic properties of the single WO<sub>3</sub> thin film were optimized, and TiO<sub>2</sub>/NiO composite films showed better electrochromic performance than that of the single NiO film. WO<sub>3</sub>/Ag and TiO<sub>2</sub>/NiO composite films with excellent electrochromic properties were respectively chosen as the cathode and the anode to construct a WO<sub>3</sub>/Ag-TiO<sub>2</sub>/NiO electrochromic device. The response time (<i>t</i><sub>c</sub> = 4.08 s, <i>t</i><sub>b</sub> = 1.08 s), optical modulation range (35.91%), and coloration efficiency (30.37 cm<sup>2</sup>·C<sup>−1</sup>) of this electrochromic device are better than those of WO<sub>3</sub>-NiO and WO<sub>3</sub>/Ag-NiO electrochromic devices. This work provides a novel research idea for the performance enhancement of electrochromic smart windows.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydroxyapatite/palmitic acid superhydrophobic composite coating on AZ31 magnesium alloy with both corrosion resistance and bacterial inhibition 兼具耐腐蚀性和抑菌性的 AZ31 镁合金羟基磷灰石/棕榈酸超疏水复合涂层
IF 2.5 4区 材料科学
Frontiers of Materials Science Pub Date : 2024-05-13 DOI: 10.1007/s11706-024-0678-8
Hang Zhang, Shu Cai, Huanlin Zhang, Lei Ling, You Zuo, Hao Tian, Tengfei Meng, Guohua Xu, Xiaogang Bao, Mintao Xue
{"title":"Hydroxyapatite/palmitic acid superhydrophobic composite coating on AZ31 magnesium alloy with both corrosion resistance and bacterial inhibition","authors":"Hang Zhang,&nbsp;Shu Cai,&nbsp;Huanlin Zhang,&nbsp;Lei Ling,&nbsp;You Zuo,&nbsp;Hao Tian,&nbsp;Tengfei Meng,&nbsp;Guohua Xu,&nbsp;Xiaogang Bao,&nbsp;Mintao Xue","doi":"10.1007/s11706-024-0678-8","DOIUrl":"10.1007/s11706-024-0678-8","url":null,"abstract":"<div><p>The coating-modified magnesium (Mg) alloys exhibit controllable corrosion resistance, but the insufficient antibacterial performance limits their clinical applications as degradable implants. Superhydrophobic coatings show excellent performance in terms of both corrosion resistance and inhibition of bacterial adhesion and growth. In this work, a hydroxyapatite (HA)/palmitic acid (PA) superhydrophobic composite coating was fabricated on the Mg alloy by the hydrothermal technique and immersion treatment. The HA/PA composite coating showed superhydrophobicity with a contact angle of 153° and a sliding angle of 2°. The coated Mg alloy exhibited excellent corrosion resistance in the simulated body fluid, with high polarization resistance (77.10 kΩ·cm<sup>2</sup>) and low corrosion current density ((0.491 ± 0.015) µA·cm<sup>−2</sup>). Meanwhile, the antibacterial efficiency of the composite coating was over 98% against <i>E. coli</i> and <i>S. aureus</i> in different periods. The results indicate that the construction of such superhydrophobic composite coating (HA/PA) on the Mg alloy can greatly improve the corrosion resistance of Mg alloy implants within the human body and avoid bacterial infection during the initial stages of implantation.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140940315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-sensitivity formaldehyde gas sensor based on Ce-doped urchin-like SnO2 nanowires derived from calcination of Sn-MOFs 基于掺杂 Ce 的海胆状 SnO2 纳米线的高灵敏度甲醛气体传感器,由 Sn-MOFs 煅烧而得
IF 2.5 4区 材料科学
Frontiers of Materials Science Pub Date : 2024-04-12 DOI: 10.1007/s11706-024-0676-x
Wei Xiao, Wei Yang, Shantang Liu
{"title":"High-sensitivity formaldehyde gas sensor based on Ce-doped urchin-like SnO2 nanowires derived from calcination of Sn-MOFs","authors":"Wei Xiao,&nbsp;Wei Yang,&nbsp;Shantang Liu","doi":"10.1007/s11706-024-0676-x","DOIUrl":"10.1007/s11706-024-0676-x","url":null,"abstract":"<div><p>Metal–organic frameworks (MOFs) have attracted widespread attention due to their regular structures, multiple material centers, and various ligands. They are always considered as one kind of ideal templates for developing highly sensitive and selective gas sensors. In this study, the advantages of MOFs with the high specific surface area (71.9891 m<sup>2</sup>·g<sup>−1</sup>) and uniform morphology were fully utilized, and urchin-like SnO<sub>2</sub> nanowires were obtained by the hydrothermal method followed by the calcination using Sn-MOFs consisting of the ligand of C<sub>9</sub>H<sub>6</sub>O<sub>6</sub> (H<sub>3</sub>BTC) and Sn/Ce center ions as sacrificial templates. This unique urchin-like nanowire structure facilitated gas diffusion and adsorption, resulting in superior gas sensitivity. A series of Ce-doped SnO<sub>2</sub> nanowires with different doping ratios were synthesized, and their gas sensing properties towards formaldehyde were studied. The resulted Ce-SnO<sub>2</sub> was revealed to have high sensitivity (201.2 at 250 °C), rapid response (4 s), long-term stability, and good repeatability for formaldehyde sensing, and the gas sensing mechanism of Ce-SnO<sub>2</sub> exposed to formaldehyde was also systematically discussed.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140585474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesoporous molecular sieve confined phase change materials with high absorption, enhanced thermal conductivity, and cooling energy charging/discharging capacity 具有高吸收率、增强热导率和冷却能量充放电能力的介孔分子筛封闭相变材料
IF 2.5 4区 材料科学
Frontiers of Materials Science Pub Date : 2024-04-11 DOI: 10.1007/s11706-024-0672-1
Qi Zhang, Chongyang Liu, Xuehong Wu, Xueling Zhang, Jun Song
{"title":"Mesoporous molecular sieve confined phase change materials with high absorption, enhanced thermal conductivity, and cooling energy charging/discharging capacity","authors":"Qi Zhang,&nbsp;Chongyang Liu,&nbsp;Xuehong Wu,&nbsp;Xueling Zhang,&nbsp;Jun Song","doi":"10.1007/s11706-024-0672-1","DOIUrl":"10.1007/s11706-024-0672-1","url":null,"abstract":"<div><p>The biggest challenge for organic phase change materials (PCMs) used in cold energy storage is to maintain high heat storage capacity while reducing the leakage risk of PCMs during the phase transition process. This is crucial for expanding their applications in the more demanding cold storage field. In this study, novel form-stable low-temperature composite PCMs are prepared with mesoporous materials, namely SBA-15 and CMK-3 (which are prepared using the template method), as supporting matrices and dodecane as the PCM. Owing to the combined effects of capillary forces within mesoporous materials and interactions among dodecane molecules, both dodecane/SBA-15 and dodecane/CMK-3 exhibit outstanding shape stability and thermal cycling stability even after 200 heating/cooling cycles. In comparison to those of dodecane/SBA-15, dodecane/CMK-3 exhibits superior cold storage performance and higher thermal conductivity. Specifically, the phase transition temperature of dodecane/CMK-3 is −8.81 °C with a latent heat of 122.4 J·g<sup>−1</sup>. Additionally, it has a thermal conductivity of 1.21 W·m<sup>−1</sup>·K<sup>−1</sup>, which is 9.45 times that of dodecane alone. All these highlight its significant potential for applications in the area of cold energy storage.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140585584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon nanotubes-reinforced polylactic acid/hydroxyapatite porous scaffolds for bone tissue engineering 用于骨组织工程的碳纳米管增强聚乳酸/羟基磷灰石多孔支架
IF 2.5 4区 材料科学
Frontiers of Materials Science Pub Date : 2024-03-18 DOI: 10.1007/s11706-024-0675-y
Weiwei Lan, Mingbo Wang, Zhenjun Lv, Jun Li, Fuying Chen, Ziwei Liang, Di Huang, Xiaochun Wei, Weiyi Chen
{"title":"Carbon nanotubes-reinforced polylactic acid/hydroxyapatite porous scaffolds for bone tissue engineering","authors":"Weiwei Lan,&nbsp;Mingbo Wang,&nbsp;Zhenjun Lv,&nbsp;Jun Li,&nbsp;Fuying Chen,&nbsp;Ziwei Liang,&nbsp;Di Huang,&nbsp;Xiaochun Wei,&nbsp;Weiyi Chen","doi":"10.1007/s11706-024-0675-y","DOIUrl":"10.1007/s11706-024-0675-y","url":null,"abstract":"<div><p>In the field of bone defect repair, critical requirements for favorable cytocompatibility and optimal mechanical properties have propelled research efforts towards the development of composite materials. In this study, carbon nanotubes/polylactic acid/hydroxyapatite (CNTs/PLA/HA) scaffolds with different contents (0.5, 1, 1.5 and 2 wt.%) of CNTs were prepared by the thermally induced phase separation (TIPS) method. The results revealed that the composite scaffolds had uniform pores with high porosities over 68% and high through performances. The addition of CNTs significantly enhanced the mechanical properties of resulted PLA/HA, in which the 1.5 wt.% CNTs/PLA/HA composite scaffold demonstrated the optimum mechanical behaviors with the bending elastic modulus of (868.5 ± 12.34) MPa, the tensile elastic modulus of (209.51 ± 12.73) MPa, and the tensile strength of (3.26 ± 0.61) MPa. Furthermore, L929 cells on the 1.5 wt.% CNTs/PLA/HA scaffold displayed good spreading performance and favorable cytocompatibility. Therefore, it is expected that the 1.5 wt.% CNTs/PLA/HA scaffold has potential applications in bone tissue engineering.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140156570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioactivity of silk fibroin peptides on vascular endothelial cells 丝纤维蛋白肽对血管内皮细胞的生物活性
IF 2.5 4区 材料科学
Frontiers of Materials Science Pub Date : 2024-03-06 DOI: 10.1007/s11706-024-0671-2
Mengnan Dai, Meng Li, Peixuan Li, Boyu Zhang, Jianmei Xu, Jiannan Wang
{"title":"Bioactivity of silk fibroin peptides on vascular endothelial cells","authors":"Mengnan Dai,&nbsp;Meng Li,&nbsp;Peixuan Li,&nbsp;Boyu Zhang,&nbsp;Jianmei Xu,&nbsp;Jiannan Wang","doi":"10.1007/s11706-024-0671-2","DOIUrl":"10.1007/s11706-024-0671-2","url":null,"abstract":"<div><p>To determine the contribution of non-repetitive domains to the bioactivity of the heavy chain in silk fibroin (SF) macromolecules, a gene motif f(1) encoding this fragment and its multimers (f(4) and f(8)) were biosynthesized from <i>Escherichia coli</i> BL21. Based on the positive application potential of SF materials for the vascular tissue engineering, this study focused on examining the active response of these polypeptides to vascular endothelial cells. Biosynthetic polypeptides F(1), F(4), and F(8) were separately grafted onto the surfaces of bioinert polyethylene terephthalate (PET) films, resulting in remarkable improvements in the spread and proliferation of human umbilical vein endothelial cells (HUVECs). Using the same grafting dose, the activity of cells on polypeptide-modified PET films enhanced with the increase of the molecular weight of those grafted polypeptides from F(1) to F(8). Meanwhile, the growth of cells on the surface of the alkaline-treated PET film was improved, indicating that the hydrophilicity of the surface material had influence on the growth of HUVECs. Moreover, on surfaces with the same water contact angle, the spread and proliferation activity of cells on PET films were significantly lower than those on polypeptide-modified PET films.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140044426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative studies on Fenton-like reactions catalyzed by Fe3O4 loaded inside and outside halloysite nanotubes for the removal of organic pollutants 霍洛石纳米管内外负载的 Fe3O4 催化的 Fenton 类反应在去除有机污染物方面的比较研究
IF 2.5 4区 材料科学
Frontiers of Materials Science Pub Date : 2024-02-08 DOI: 10.1007/s11706-024-0673-0
Yang Li, Jia-Qi Zhou, Huan-Yan Xu, Li-Min Dong, Mao-Chang Cao, Lian-Wei Shan, Li-Guo Jin, Xiu-Lan He, Shu-Yan Qi
{"title":"Comparative studies on Fenton-like reactions catalyzed by Fe3O4 loaded inside and outside halloysite nanotubes for the removal of organic pollutants","authors":"Yang Li,&nbsp;Jia-Qi Zhou,&nbsp;Huan-Yan Xu,&nbsp;Li-Min Dong,&nbsp;Mao-Chang Cao,&nbsp;Lian-Wei Shan,&nbsp;Li-Guo Jin,&nbsp;Xiu-Lan He,&nbsp;Shu-Yan Qi","doi":"10.1007/s11706-024-0673-0","DOIUrl":"10.1007/s11706-024-0673-0","url":null,"abstract":"<div><p>In this work, Fe<sub>3</sub>O<sub>4</sub> nanoparticles (NPs) loaded inside and outside halloysite nanotubes (HNTs) were prepared and developed as the heterogeneous Fenton-like catalysts for the removal of representative organic pollutants. Characterization results indicated that the samples with Fe<sub>3</sub>O<sub>4</sub> NPs loaded outside the HNTs lumen (Fe<sub>3</sub>O<sub>4</sub>/HNTs) and inside the HNTs lumen (Fe<sub>3</sub>O<sub>4</sub>@HNTs) were successfully prepared. Both samples had typical magnetic hysteresis loops, while Fe<sub>3</sub>O<sub>4</sub>@HNTs exhibited higher magnetization intensity. The comparative experiments showed that Fe<sub>3</sub>O<sub>4</sub>@HNTs had better Fenton-like catalytic ability than that of Fe<sub>3</sub>O<sub>4</sub>/HNTs in the degradation of various organic pollutants. Taking Rhodamine B (RhB) as an example, the adsorption thermodynamics and kinetics of RhB onto Fe<sub>3</sub>O<sub>4</sub>/HNTs and Fe<sub>3</sub>O<sub>4</sub>@HNTs were also investigated. The comparative results demonstrated that the adsorption ability of Fe<sub>3</sub>O<sub>4</sub>/HNTs was better than that of Fe<sub>3</sub>O<sub>4</sub>@HNTs. Moreover, the dissolved concentration of Fe<sup>2+</sup> and production amount of hydroxyl radical (·OH) in the Fe<sub>3</sub>O<sub>4</sub>@HNTs-H<sub>2</sub>O<sub>2</sub> system were significantly higher than those in the Fe<sub>3</sub>O<sub>4</sub>/HNTs-H<sub>2</sub>O<sub>2</sub> system. Based on aforementioned comparison, the nano-confinement effect in the Fe<sub>3</sub>O<sub>4</sub>@HNTs-H<sub>2</sub>O<sub>2</sub> system was verified. This work provides meaningful guidance for the cheap and convenient design of nanoreactors for Fenton-like applications.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139765291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信