A unique dual-shell encapsulated structure design achieves stable and high-rate lithium storage of Si@a-TiO2@a-C anode

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Guang Ma, Chong Xu, Dongyuan Zhang, Sai Che, Yuxin Liu, Gong Cheng, Chenlin Wang, Kexin Wei, Yongfeng Li
{"title":"A unique dual-shell encapsulated structure design achieves stable and high-rate lithium storage of Si@a-TiO2@a-C anode","authors":"Guang Ma,&nbsp;Chong Xu,&nbsp;Dongyuan Zhang,&nbsp;Sai Che,&nbsp;Yuxin Liu,&nbsp;Gong Cheng,&nbsp;Chenlin Wang,&nbsp;Kexin Wei,&nbsp;Yongfeng Li","doi":"10.1007/s11706-024-0708-6","DOIUrl":null,"url":null,"abstract":"<div><p>Due to high theoretical capacity and low lithium-storage potential, silicon (Si)-based anode materials are considered as one kind of the most promising options for lithium-ion batteries. However, their practical applications are still limited because of significant volume expansion and poor conductivity during cycling. In this study, we prepared a double core–shell nanostructure through coating commercial Si nanoparticles with both amorphous titanium dioxide (a-TiO<sub>2</sub>) and amorphous carbon (a-C) via a facile sol–gel method combined with chemical vapor deposition. Elastic behaviors of a-TiO<sub>2</sub> shells allowed for the release of strain, maintaining the integrity of Si cores during charge–discharge processes. Additionally, outer layers of a-C provided numerous pore channels facilitating the transport of both Li<sup>+</sup> ions and electrons. Using the distribution of relaxation time analysis, we provided a precise kinetic explanation for the observed electrochemical behaviors. Furthermore, the structural evolution of the anode was explored during cycling processes. The Si@a-TiO<sub>2</sub>@a-C-6 anode was revealed to exhibit excellent electrochemical properties, achieving a capacity retention rate of 86.7% (877.1 mA·h·g<sup>−1</sup> after 500 cycles at a 1 A·g<sup>−1</sup>). This result offers valuable insights for the design of high-performance and cyclically stable Si-based anode materials.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-024-0708-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to high theoretical capacity and low lithium-storage potential, silicon (Si)-based anode materials are considered as one kind of the most promising options for lithium-ion batteries. However, their practical applications are still limited because of significant volume expansion and poor conductivity during cycling. In this study, we prepared a double core–shell nanostructure through coating commercial Si nanoparticles with both amorphous titanium dioxide (a-TiO2) and amorphous carbon (a-C) via a facile sol–gel method combined with chemical vapor deposition. Elastic behaviors of a-TiO2 shells allowed for the release of strain, maintaining the integrity of Si cores during charge–discharge processes. Additionally, outer layers of a-C provided numerous pore channels facilitating the transport of both Li+ ions and electrons. Using the distribution of relaxation time analysis, we provided a precise kinetic explanation for the observed electrochemical behaviors. Furthermore, the structural evolution of the anode was explored during cycling processes. The Si@a-TiO2@a-C-6 anode was revealed to exhibit excellent electrochemical properties, achieving a capacity retention rate of 86.7% (877.1 mA·h·g−1 after 500 cycles at a 1 A·g−1). This result offers valuable insights for the design of high-performance and cyclically stable Si-based anode materials.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers of Materials Science
Frontiers of Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.20
自引率
3.70%
发文量
515
期刊介绍: Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community. The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to): Biomaterials including biomimetics and biomineralization; Nano materials; Polymers and composites; New metallic materials; Advanced ceramics; Materials modeling and computation; Frontier materials synthesis and characterization; Novel methods for materials manufacturing; Materials performance; Materials applications in energy, information and biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信