基于氧化石墨烯的纳米杂化膜用于海水淡化和染料分离的纳滤和反渗透膜:综述

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Iluska Marques Santos, Carlos Alberto Caldas de Souza
{"title":"基于氧化石墨烯的纳米杂化膜用于海水淡化和染料分离的纳滤和反渗透膜:综述","authors":"Iluska Marques Santos,&nbsp;Carlos Alberto Caldas de Souza","doi":"10.1007/s11706-024-0700-1","DOIUrl":null,"url":null,"abstract":"<div><p>Novel advanced nanocomposites formed by associating graphene oxide (GO) nanosheets with other nanomaterials such as titanium dioxide nanoparticles, cellulose nanofibers, cellulose nanocrystals, and carbon nanotubes were incorporated in nanofiltration (NF) and reverse osmosis (RO) membranes for wastewater treatment and desalination. GO-based nanocomposite has promising potential in membrane technology due to its high hydrophilicity, absorption capacity, good dispersibility in water and organic solvents, anti-biofouling properties, and negative charge. Moreover, additional properties can be obtained depending on the nanohybrid formed. This review paper highlights the recent breakthrough in membranes functionalized with GO-based nanohybrids, focusing on membrane performance in terms of permeability, selectivity, and antifouling properties. Although GO-based nanohybrids have made significant progress in membrane technology, improvements are still needed, especially regarding trade-off effects. Furthermore, the studies presented here are limited to laboratory scale, which leads to suggestions for new studies evaluating the possibility of commercial application and the potential environmental impact caused by nanocomposites.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphene oxide-based nanohybrids incorporated in nanofiltration and reverse osmosis membranes for desalination and dye separation: a review\",\"authors\":\"Iluska Marques Santos,&nbsp;Carlos Alberto Caldas de Souza\",\"doi\":\"10.1007/s11706-024-0700-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Novel advanced nanocomposites formed by associating graphene oxide (GO) nanosheets with other nanomaterials such as titanium dioxide nanoparticles, cellulose nanofibers, cellulose nanocrystals, and carbon nanotubes were incorporated in nanofiltration (NF) and reverse osmosis (RO) membranes for wastewater treatment and desalination. GO-based nanocomposite has promising potential in membrane technology due to its high hydrophilicity, absorption capacity, good dispersibility in water and organic solvents, anti-biofouling properties, and negative charge. Moreover, additional properties can be obtained depending on the nanohybrid formed. This review paper highlights the recent breakthrough in membranes functionalized with GO-based nanohybrids, focusing on membrane performance in terms of permeability, selectivity, and antifouling properties. Although GO-based nanohybrids have made significant progress in membrane technology, improvements are still needed, especially regarding trade-off effects. Furthermore, the studies presented here are limited to laboratory scale, which leads to suggestions for new studies evaluating the possibility of commercial application and the potential environmental impact caused by nanocomposites.</p></div>\",\"PeriodicalId\":572,\"journal\":{\"name\":\"Frontiers of Materials Science\",\"volume\":\"18 4\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11706-024-0700-1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-024-0700-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将氧化石墨烯(GO)纳米片与二氧化钛纳米颗粒、纤维素纳米纤维、纤维素纳米晶体和碳纳米管等其他纳米材料结合形成的新型先进纳米复合材料,用于纳滤(NF)和反渗透(RO)膜,用于废水处理和海水淡化。氧化石墨烯基纳米复合材料具有较高的亲水性、吸附性、在水和有机溶剂中的良好分散性、抗生物污染性能和负电荷等优点,在膜技术中具有广阔的应用前景。此外,根据形成的纳米杂化物,可以获得额外的性能。本文综述了氧化石墨烯基纳米杂交体功能化膜的最新进展,重点介绍了膜的渗透性、选择性和防污性能。尽管氧化石墨烯基纳米杂交体在膜技术方面取得了重大进展,但仍需要改进,特别是在权衡效应方面。此外,这里提出的研究仅限于实验室规模,这导致了新的研究建议,评估商业应用的可能性和纳米复合材料对环境的潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graphene oxide-based nanohybrids incorporated in nanofiltration and reverse osmosis membranes for desalination and dye separation: a review

Novel advanced nanocomposites formed by associating graphene oxide (GO) nanosheets with other nanomaterials such as titanium dioxide nanoparticles, cellulose nanofibers, cellulose nanocrystals, and carbon nanotubes were incorporated in nanofiltration (NF) and reverse osmosis (RO) membranes for wastewater treatment and desalination. GO-based nanocomposite has promising potential in membrane technology due to its high hydrophilicity, absorption capacity, good dispersibility in water and organic solvents, anti-biofouling properties, and negative charge. Moreover, additional properties can be obtained depending on the nanohybrid formed. This review paper highlights the recent breakthrough in membranes functionalized with GO-based nanohybrids, focusing on membrane performance in terms of permeability, selectivity, and antifouling properties. Although GO-based nanohybrids have made significant progress in membrane technology, improvements are still needed, especially regarding trade-off effects. Furthermore, the studies presented here are limited to laboratory scale, which leads to suggestions for new studies evaluating the possibility of commercial application and the potential environmental impact caused by nanocomposites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Materials Science
Frontiers of Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.20
自引率
3.70%
发文量
515
期刊介绍: Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community. The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to): Biomaterials including biomimetics and biomineralization; Nano materials; Polymers and composites; New metallic materials; Advanced ceramics; Materials modeling and computation; Frontier materials synthesis and characterization; Novel methods for materials manufacturing; Materials performance; Materials applications in energy, information and biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信