Li-ping Yue, Fan-xin Kong, Jin-fu Chen, Ai-guo Zhou, Guang-dong Sun
{"title":"Quantifying functional groups in the active layer of polyamide nanofiltration membranes via the dye adsorption method","authors":"Li-ping Yue, Fan-xin Kong, Jin-fu Chen, Ai-guo Zhou, Guang-dong Sun","doi":"10.1007/s11706-024-0706-8","DOIUrl":null,"url":null,"abstract":"<div><p>Ionized amine group (R-NH<sub>2</sub>) and carboxyl group (R-COOH) within the active layer of polyamide (PA) nanofiltration membranes result in the formation of positive (R-NH<span>\n <sup>+</sup><sub>3</sub>\n \n </span>) and negative (R-COO<sup>−</sup>) functional groups, respectively, which determines membrane performance and is essential for membrane fabrication and modification. Herein, a facile dye adsorption/desorption method using Orange II and Toluidine Blue O dyes was developed to measure the densities of R-NH<sub>2</sub>, R-NH<span>\n <sup>+</sup><sub>3</sub>\n \n </span>, R-COOH, or R-COO<sup>−</sup> on surfaces of six PA membranes, and the correlation between the density of such groups and the zeta potential was established. The dye adsorption method was proven reliable due to its lower standard deviation, detection limit, and quantification limit values. Furthermore, the densities of R-NH<span>\n <sup>+</sup><sub>3</sub>\n \n </span> or R-COO<sup>−</sup> under different pH values were measured, fitting well with results calculated from the acid-base equilibrium theory. Additionally, a correlation was established between the net surface density ([R-NH<span>\n <sup>+</sup><sub>3</sub>\n \n </span>] − [R-COO<sup>−</sup>]) and the surface charge density (<i>σ</i>) calculated via the Gouy–Chapman model based on zeta potential results. The resulted correlation (<i>σ</i>/(mC·m<sup>−2</sup>) = (3.67 ± 0.08) × ([R-NH<span>\n <sup>+</sup><sub>3</sub>\n \n </span>] − [R-COO<sup>−</sup>])/(nmol·cm<sup>−2</sup>) + (0.295 ± 0.08)) effectively predicts the <i>σ</i> value of the membrane. This study provides a facile and reliable dye adsorption method for measuring the density of R-NH<sub>2</sub>, R-NH<span>\n <sup>+</sup><sub>3</sub>\n \n </span>, R-COOH, or R-COO<sup>−</sup>, enabling an in-depth understanding of membrane charge properties.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-024-0706-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ionized amine group (R-NH2) and carboxyl group (R-COOH) within the active layer of polyamide (PA) nanofiltration membranes result in the formation of positive (R-NH+3) and negative (R-COO−) functional groups, respectively, which determines membrane performance and is essential for membrane fabrication and modification. Herein, a facile dye adsorption/desorption method using Orange II and Toluidine Blue O dyes was developed to measure the densities of R-NH2, R-NH+3, R-COOH, or R-COO− on surfaces of six PA membranes, and the correlation between the density of such groups and the zeta potential was established. The dye adsorption method was proven reliable due to its lower standard deviation, detection limit, and quantification limit values. Furthermore, the densities of R-NH+3 or R-COO− under different pH values were measured, fitting well with results calculated from the acid-base equilibrium theory. Additionally, a correlation was established between the net surface density ([R-NH+3] − [R-COO−]) and the surface charge density (σ) calculated via the Gouy–Chapman model based on zeta potential results. The resulted correlation (σ/(mC·m−2) = (3.67 ± 0.08) × ([R-NH+3] − [R-COO−])/(nmol·cm−2) + (0.295 ± 0.08)) effectively predicts the σ value of the membrane. This study provides a facile and reliable dye adsorption method for measuring the density of R-NH2, R-NH+3, R-COOH, or R-COO−, enabling an in-depth understanding of membrane charge properties.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.