Iluska Marques Santos, Carlos Alberto Caldas de Souza
{"title":"Graphene oxide-based nanohybrids incorporated in nanofiltration and reverse osmosis membranes for desalination and dye separation: a review","authors":"Iluska Marques Santos, Carlos Alberto Caldas de Souza","doi":"10.1007/s11706-024-0700-1","DOIUrl":null,"url":null,"abstract":"<div><p>Novel advanced nanocomposites formed by associating graphene oxide (GO) nanosheets with other nanomaterials such as titanium dioxide nanoparticles, cellulose nanofibers, cellulose nanocrystals, and carbon nanotubes were incorporated in nanofiltration (NF) and reverse osmosis (RO) membranes for wastewater treatment and desalination. GO-based nanocomposite has promising potential in membrane technology due to its high hydrophilicity, absorption capacity, good dispersibility in water and organic solvents, anti-biofouling properties, and negative charge. Moreover, additional properties can be obtained depending on the nanohybrid formed. This review paper highlights the recent breakthrough in membranes functionalized with GO-based nanohybrids, focusing on membrane performance in terms of permeability, selectivity, and antifouling properties. Although GO-based nanohybrids have made significant progress in membrane technology, improvements are still needed, especially regarding trade-off effects. Furthermore, the studies presented here are limited to laboratory scale, which leads to suggestions for new studies evaluating the possibility of commercial application and the potential environmental impact caused by nanocomposites.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-024-0700-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Novel advanced nanocomposites formed by associating graphene oxide (GO) nanosheets with other nanomaterials such as titanium dioxide nanoparticles, cellulose nanofibers, cellulose nanocrystals, and carbon nanotubes were incorporated in nanofiltration (NF) and reverse osmosis (RO) membranes for wastewater treatment and desalination. GO-based nanocomposite has promising potential in membrane technology due to its high hydrophilicity, absorption capacity, good dispersibility in water and organic solvents, anti-biofouling properties, and negative charge. Moreover, additional properties can be obtained depending on the nanohybrid formed. This review paper highlights the recent breakthrough in membranes functionalized with GO-based nanohybrids, focusing on membrane performance in terms of permeability, selectivity, and antifouling properties. Although GO-based nanohybrids have made significant progress in membrane technology, improvements are still needed, especially regarding trade-off effects. Furthermore, the studies presented here are limited to laboratory scale, which leads to suggestions for new studies evaluating the possibility of commercial application and the potential environmental impact caused by nanocomposites.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.