Indagationes Mathematicae-New Series最新文献

筛选
英文 中文
Qℓ-cohomology projective planes from Enriques surfaces in odd characteristic 奇特征恩里克曲面的Qℓ-同调投影面
IF 0.5 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2024-07-01 DOI: 10.1016/j.indag.2024.01.007
Matthias Schütt
{"title":"Qℓ-cohomology projective planes from Enriques surfaces in odd characteristic","authors":"Matthias Schütt","doi":"10.1016/j.indag.2024.01.007","DOIUrl":"10.1016/j.indag.2024.01.007","url":null,"abstract":"<div><p>We give a complete classification of <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span>-cohomology projective planes with isolated ADE-singularities and numerically trivial canonical bundle in odd characteristic. This leads to a beautiful relation with certain Enriques surfaces which parallels the situation in characteristic zero, yet displays intriguing subtleties.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 4","pages":"Pages 744-767"},"PeriodicalIF":0.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357724000077/pdfft?md5=3c3aaaef3ddd511c727a0f394e98674a&pid=1-s2.0-S0019357724000077-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139763532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ranks of elliptic curves in cyclic sextic extensions of Q Q 的循环六元扩展中的椭圆曲线秩
IF 0.5 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2024-07-01 DOI: 10.1016/j.indag.2024.01.004
Hershy Kisilevsky , Masato Kuwata
{"title":"Ranks of elliptic curves in cyclic sextic extensions of Q","authors":"Hershy Kisilevsky ,&nbsp;Masato Kuwata","doi":"10.1016/j.indag.2024.01.004","DOIUrl":"10.1016/j.indag.2024.01.004","url":null,"abstract":"<div><p><span>For an elliptic curve </span><span><math><mrow><mi>E</mi><mo>/</mo><mi>Q</mi></mrow></math></span> we show that there are infinitely many cyclic sextic extensions <span><math><mrow><mi>K</mi><mo>/</mo><mi>Q</mi></mrow></math></span> such that the Mordell–Weil group <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>K</mi><mo>)</mo></mrow></mrow></math></span> has rank greater than the subgroup of <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>K</mi><mo>)</mo></mrow></mrow></math></span> generated by all the <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> for the proper subfields <span><math><mrow><mi>F</mi><mo>⊂</mo><mi>K</mi></mrow></math></span>. For certain curves <span><math><mrow><mi>E</mi><mo>/</mo><mi>Q</mi></mrow></math></span> we show that the number of such fields <span><math><mi>K</mi></math></span> of conductor less than <span><math><mi>X</mi></math></span> is <span><math><mrow><mo>≫</mo><msqrt><mrow><mi>X</mi></mrow></msqrt></mrow></math></span>.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 4","pages":"Pages 728-743"},"PeriodicalIF":0.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139551961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computing the Weil representation of a superelliptic curve 计算超椭圆曲线的 Weil 表示
IF 0.5 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2024-07-01 DOI: 10.1016/j.indag.2024.01.002
Irene I. Bouw, Duc Khoi Do, Stefan Wewers
{"title":"Computing the Weil representation of a superelliptic curve","authors":"Irene I. Bouw,&nbsp;Duc Khoi Do,&nbsp;Stefan Wewers","doi":"10.1016/j.indag.2024.01.002","DOIUrl":"10.1016/j.indag.2024.01.002","url":null,"abstract":"<div><p>We study the Weil representation <span><math><mi>ρ</mi></math></span> of a curve over a <span><math><mi>p</mi></math></span>-adic field with potential reduction of compact type. We show that <span><math><mi>ρ</mi></math></span> can be reconstructed from its stable reduction. For superelliptic curves of the form <span><math><mrow><msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> at primes <span><math><mi>p</mi></math></span> whose residue characteristic is prime to the exponent <span><math><mi>n</mi></math></span> we make this explicit.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 4","pages":"Pages 708-727"},"PeriodicalIF":0.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357724000028/pdfft?md5=a98632bbf32b4580b4c64c774c1f6a96&pid=1-s2.0-S0019357724000028-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139506875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regular models of hyperelliptic curves 超椭圆曲线的常规模型
IF 0.5 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2024-07-01 DOI: 10.1016/j.indag.2023.12.001
Simone Muselli
{"title":"Regular models of hyperelliptic curves","authors":"Simone Muselli","doi":"10.1016/j.indag.2023.12.001","DOIUrl":"10.1016/j.indag.2023.12.001","url":null,"abstract":"<div><p>Let <span><math><mi>K</mi></math></span> be a complete discretely valued field of residue characteristic not 2 and <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span> its ring of integers. We explicitly construct a regular model over <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span> with strict normal crossings of any hyperelliptic curve <span><math><mrow><mi>C</mi><mo>/</mo><mi>K</mi><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>. For this purpose, we introduce the new notion of <em>MacLane cluster picture</em>, that aims to be a link between clusters and MacLane valuations.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 4","pages":"Pages 646-697"},"PeriodicalIF":0.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357723001040/pdfft?md5=04ca296b6016027d47af6c7c64f21d09&pid=1-s2.0-S0019357723001040-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138555115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Curves over finite fields and arithmetic and geometry of K3 surfaces: Celebrating Jaap Top’s 60th anniversary 有限域上的曲线和 K3 曲面的算术与几何:庆祝雅普-托普逝世 60 周年
IF 0.5 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2024-07-01 DOI: 10.1016/j.indag.2024.06.006
Remke Kloosterman (Managing Editor), Steffen Müller, Cecília Salgado, Lenny Taelman
{"title":"Curves over finite fields and arithmetic and geometry of K3 surfaces: Celebrating Jaap Top’s 60th anniversary","authors":"Remke Kloosterman (Managing Editor),&nbsp;Steffen Müller,&nbsp;Cecília Salgado,&nbsp;Lenny Taelman","doi":"10.1016/j.indag.2024.06.006","DOIUrl":"https://doi.org/10.1016/j.indag.2024.06.006","url":null,"abstract":"","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 4","pages":"Page 609"},"PeriodicalIF":0.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141582268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Counterexamples to the Hasse Principle among the twists of the Klein quartic 克莱因四次方畸变中的哈塞原理反例
IF 0.5 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2024-07-01 DOI: 10.1016/j.indag.2023.08.007
Elisa Lorenzo García , Michaël Vullers
{"title":"Counterexamples to the Hasse Principle among the twists of the Klein quartic","authors":"Elisa Lorenzo García ,&nbsp;Michaël Vullers","doi":"10.1016/j.indag.2023.08.007","DOIUrl":"10.1016/j.indag.2023.08.007","url":null,"abstract":"<div><p>In this paper we inspect from closer the local and global points of the twists of the Klein quartic. For the local ones we use geometric arguments, while for the global ones we strongly use the modular interpretation of the twists. The main result is providing families with (conjecturally infinitely many) twists of the Klein quartic that are counterexamples to the Hasse Principle.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 4","pages":"Pages 638-645"},"PeriodicalIF":0.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357723000848/pdfft?md5=03e46a5dbb56004e38e7926d976cb7c3&pid=1-s2.0-S0019357723000848-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135944511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Galois-invariant part of the Weyl group of the Picard lattice of a K3 surface K3曲面Picard晶格的Weyl群的伽罗瓦不变部分
IF 0.5 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2024-07-01 DOI: 10.1016/j.indag.2023.08.004
Wim Nijgh, Ronald van Luijk
{"title":"On the Galois-invariant part of the Weyl group of the Picard lattice of a K3 surface","authors":"Wim Nijgh,&nbsp;Ronald van Luijk","doi":"10.1016/j.indag.2023.08.004","DOIUrl":"10.1016/j.indag.2023.08.004","url":null,"abstract":"<div><p>Let <span><math><mi>X</mi></math></span> denote a K3 surface over an arbitrary field <span><math><mi>k</mi></math></span>. Let <span><math><msup><mrow><mi>k</mi></mrow><mrow><mtext>s</mtext></mrow></msup></math></span> denote a separable closure of <span><math><mi>k</mi></math></span> and let <span><math><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup></math></span> denote the base change of <span><math><mi>X</mi></math></span> to <span><math><msup><mrow><mi>k</mi></mrow><mrow><mtext>s</mtext></mrow></msup></math></span>. Let <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup><mo>)</mo></mrow></mrow></math></span> denote the group of isometries of the lattices <span><math><mrow><mo>Pic</mo><mi>X</mi></mrow></math></span> and <span><math><mrow><mo>Pic</mo><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup></mrow></math></span>, respectively. Let <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> denote the Galois invariant part of the Weyl group of <span><math><mrow><mo>Pic</mo><msup><mrow><mi>X</mi></mrow><mrow><mtext>s</mtext></mrow></msup></mrow></math></span>. One can show that each element in <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> can be restricted to an element of <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span>. The following question arises: <em>Is the image of the restriction map</em> <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>→</mo><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> <em>a normal subgroup of</em> <span><math><mrow><mo>O</mo><mrow><mo>(</mo><mo>Pic</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> <em>for every K3 surface</em> <span><math><mi>X</mi></math></span><em>?</em> We show that the answer is negative by giving counterexamples over <span><math><mrow><mi>k</mi><mo>=</mo><mi>Q</mi></mrow></math></span>.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 4","pages":"Pages 610-621"},"PeriodicalIF":0.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357723000812/pdfft?md5=6dd74732aaf671c0aaa5195ba03e905f&pid=1-s2.0-S0019357723000812-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41575279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometric progressions in the sets of values of rational functions 有理函数值集中的几何级数
IF 0.5 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2024-07-01 DOI: 10.1016/j.indag.2023.08.005
Maciej Ulas
{"title":"Geometric progressions in the sets of values of rational functions","authors":"Maciej Ulas","doi":"10.1016/j.indag.2023.08.005","DOIUrl":"10.1016/j.indag.2023.08.005","url":null,"abstract":"<div><p>Let <span><math><mrow><mi>a</mi><mo>,</mo><mi>Q</mi><mo>∈</mo><mi>Q</mi></mrow></math></span> be given and consider the set <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>Q</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>{</mo><mi>a</mi><msup><mrow><mi>Q</mi></mrow><mrow><mi>i</mi></mrow></msup><mo>:</mo><mspace></mspace><mi>i</mi><mo>∈</mo><mi>N</mi><mo>}</mo></mrow></mrow></math></span> of terms of geometric progression with 0th term equal to <span><math><mi>a</mi></math></span> and the quotient <span><math><mi>Q</mi></math></span>. Let <span><math><mrow><mi>f</mi><mo>∈</mo><mi>Q</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> be the set of finite values of <span><math><mi>f</mi></math></span>. We consider the problem of existence of <span><math><mrow><mi>a</mi><mo>,</mo><mi>Q</mi><mo>∈</mo><mi>Q</mi></mrow></math></span> such that <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>Q</mi><mo>)</mo></mrow><mo>⊂</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>f</mi></mrow></msub></mrow></math></span>. In the first part of the paper we describe certain classes of rational functions for which our problem has a positive solution. In the second, experimental, part of the paper we study the stated problem for the rational function <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow><mo>/</mo><mi>x</mi></mrow></math></span>. We relate the problem to the existence of rational points on certain elliptic curves and present interesting numerical observations which allow us to state several questions and conjectures.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 4","pages":"Pages 622-637"},"PeriodicalIF":0.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357723000824/pdfft?md5=6a0ec32c7eb19c5b691f6b150a52a65c&pid=1-s2.0-S0019357723000824-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46926096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
p-linear schemes for sequences modulo pr 序列模数 pr 的 p 线性方案
IF 0.5 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2024-07-01 DOI: 10.1016/j.indag.2023.12.003
Frits Beukers
{"title":"p-linear schemes for sequences modulo pr","authors":"Frits Beukers","doi":"10.1016/j.indag.2023.12.003","DOIUrl":"10.1016/j.indag.2023.12.003","url":null,"abstract":"<div><p>Many interesting combinatorial sequences, such as Apéry numbers and Franel numbers, enjoy the so-called Lucas property modulo almost all primes <span><math><mi>p</mi></math></span>. Modulo prime powers <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> such sequences have a more complicated behaviour which can be described by matrix versions of the Lucas property called <span><math><mi>p</mi></math></span>-linear schemes. They are generalizations of finite <span><math><mi>p</mi></math></span>-automata. In this paper we construct such <span><math><mi>p</mi></math></span>-linear schemes and give upper bounds for the number of states which, for fixed <span><math><mi>r</mi></math></span>, do not depend on <span><math><mi>p</mi></math></span>.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 4","pages":"Pages 698-707"},"PeriodicalIF":0.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357723001064/pdfft?md5=ea710133f3e4e343c282392434c744c9&pid=1-s2.0-S0019357723001064-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138629792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Submersions, immersions, and étale maps in diffeology 衍射学中的淹没、沉浸和阶梯映射
IF 0.6 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2024-05-01 DOI: 10.1016/j.indag.2024.03.004
Alireza Ahmadi
{"title":"Submersions, immersions, and étale maps in diffeology","authors":"Alireza Ahmadi","doi":"10.1016/j.indag.2024.03.004","DOIUrl":"10.1016/j.indag.2024.03.004","url":null,"abstract":"<div><p>Although structural maps such as subductions and inductions appear naturally in diffeology, one of the challenges is providing suitable analogues for submersions, immersions, and étale maps (i.e., local diffeomorphisms) consistent with the classical versions of these maps between manifolds. In this paper, we consider diffeological or plotwise versions of submersions, immersions, and étale maps as an adaptation of these maps to diffeology by a nonlinear approach. We study their diffeological properties from different aspects in a systematic fashion with respect to the germs of plots.</p><p>In order to characterize the considered maps from their linear behaviors, we introduce a class of diffeological spaces, so-called diffeological étale manifolds, which not only contains the usual manifolds but also includes irrational tori. We state and prove versions of the rank and implicit function theorems, as well as the fundamental theorem on flows in this class. As an application, we use the results of this work to facilitate the computations of the internal tangent spaces and diffeological dimensions in a few interesting cases.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 3","pages":"Pages 459-499"},"PeriodicalIF":0.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信