Gap labels for zeros of the partition function of the 1D Ising model via the Schwartzman homomorphism

IF 0.5 4区 数学 Q3 MATHEMATICS
{"title":"Gap labels for zeros of the partition function of the 1D Ising model via the Schwartzman homomorphism","authors":"","doi":"10.1016/j.indag.2023.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>Inspired by the 1995 paper of Baake–Grimm–Pisani, we aim to explain the empirical observation that the distribution of Lee–Yang zeros corresponding to a one-dimensional Ising model<span> appears to follow the gap labelling theorem. This follows by combining two main ingredients: first, the relation between the transfer matrix formalism for the 1D Ising model and an ostensibly unrelated matrix formalism generating the Szegő recursion for orthogonal polynomials on the unit circle, and second, the gap labelling theorem for CMV matrices.</span></p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 5","pages":"Pages 813-836"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000502","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by the 1995 paper of Baake–Grimm–Pisani, we aim to explain the empirical observation that the distribution of Lee–Yang zeros corresponding to a one-dimensional Ising model appears to follow the gap labelling theorem. This follows by combining two main ingredients: first, the relation between the transfer matrix formalism for the 1D Ising model and an ostensibly unrelated matrix formalism generating the Szegő recursion for orthogonal polynomials on the unit circle, and second, the gap labelling theorem for CMV matrices.

通过施瓦茨曼同构实现一维伊辛模型分区函数零点的间隙标签
受 Baake-Grimm-Pisani 1995 年论文的启发,我们旨在解释一维伊辛模型对应的李-杨零点分布似乎遵循间隙标记定理这一经验观察。这需要结合两个主要因素:第一,一维伊辛模型的转移矩阵形式主义与表面上无关的矩阵形式主义之间的关系,后者产生了单位圆上正交多项式的 Szegő 递归;第二,CMV 矩阵的间隙标签定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信