Indagationes Mathematicae-New Series最新文献

筛选
英文 中文
Riesz completions of some spaces of regular operators 一些正则算子空间的里兹完备性
IF 0.6 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2024-05-01 DOI: 10.1016/j.indag.2024.03.002
A.W. Wickstead
{"title":"Riesz completions of some spaces of regular operators","authors":"A.W. Wickstead","doi":"10.1016/j.indag.2024.03.002","DOIUrl":"10.1016/j.indag.2024.03.002","url":null,"abstract":"<div><p>We describe the Riesz completion (in the sense of van Haandel) of some spaces of regular operators as explicitly identified subspaces of the regular operators into larger range spaces.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 3","pages":"Pages 443-458"},"PeriodicalIF":0.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357724000120/pdfft?md5=fd9d14e2af70c1e89e3e3b2766d40e84&pid=1-s2.0-S0019357724000120-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140150271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On moments and symmetrical sequences 关于矩和对称序列
IF 0.6 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2024-05-01 DOI: 10.1016/j.indag.2024.04.008
Jiten Ahuja, Ricardo Estrada
{"title":"On moments and symmetrical sequences","authors":"Jiten Ahuja,&nbsp;Ricardo Estrada","doi":"10.1016/j.indag.2024.04.008","DOIUrl":"10.1016/j.indag.2024.04.008","url":null,"abstract":"&lt;div&gt;&lt;p&gt;In this article we consider questions related to the behavior of the moments &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; when the indices are restricted to specific subsequences of integers, such as the even or odd moments. If &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; we introduce the notion of symmetrical series of order &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; showing that if &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is symmetrical then &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; whenever &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;∤&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; in particular, the odd moments of a symmetrical series of order 2 vanish. We prove that when &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for some &lt;span&gt;&lt;math&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; then several results characterizing the sequence from its moments hold. We show, in particular, that if &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; whenever &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;∤&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; then &lt;span&gt;&lt;math&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/math&gt;&lt;/span&gt; is a rearrangement of a symmetrical series of order &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; We then construct examples of sequences whose moments vanish with required density. Lastly, we construct counterexamples of several of the results valid in the &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; case if we allow the moment series to be all &lt;em&gt;conditionally convergent&lt;/em&gt;. We show that for each &lt;em&gt;arbitrary&lt;/em&gt; sequence of real numbers &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; there are real sequences &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; such that &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 3","pages":"Pages 584-594"},"PeriodicalIF":0.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140928614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sign involutions on para-abelian varieties 准阿贝尔变体上的符号卷积
IF 0.6 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2024-05-01 DOI: 10.1016/j.indag.2024.04.006
Jakob Bergqvist, Thuong Dang, Stefan Schröer
{"title":"Sign involutions on para-abelian varieties","authors":"Jakob Bergqvist,&nbsp;Thuong Dang,&nbsp;Stefan Schröer","doi":"10.1016/j.indag.2024.04.006","DOIUrl":"10.1016/j.indag.2024.04.006","url":null,"abstract":"<div><p>We study the so-called sign involutions on twisted forms of abelian varieties, and show that such a sign involution exists if and only if the class in the Weil–Châtelet group is annihilated by two. If these equivalent conditions hold, we prove that the Picard scheme of the quotient is étale and contains no points of finite order. In dimension one, such quotients are Brauer–Severi curves, and we analyze the ensuing embeddings of the genus-one curve into twisted forms of Hirzebruch surfaces and weighted projective spaces.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 3","pages":"Pages 570-583"},"PeriodicalIF":0.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357724000387/pdfft?md5=204d239f9d696a1e77d8dd327376fb09&pid=1-s2.0-S0019357724000387-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140928444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explicit dynamical systems on the Sierpiński carpet 西尔皮斯基地毯上的显式动力系统
IF 0.6 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2024-05-01 DOI: 10.1016/j.indag.2024.02.003
Worapan Homsomboon
{"title":"Explicit dynamical systems on the Sierpiński carpet","authors":"Worapan Homsomboon","doi":"10.1016/j.indag.2024.02.003","DOIUrl":"10.1016/j.indag.2024.02.003","url":null,"abstract":"<div><p>We apply Boroński and Oprocha’s inverse limit construction of dynamical systems on the Sierpiński carpet by using the initial systems of <span><math><mi>n</mi></math></span>-Chamanara surfaces and their <span><math><mi>n</mi></math></span>-baker transformations, <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></math></span>. We show that all positive real numbers are realized as metric entropy values of dynamical systems on the carpet. We also produce a simplification of Boroński and Oprocha’s proof showing that dynamical systems on the carpet do not have the Bowen specification property.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 3","pages":"Pages 407-433"},"PeriodicalIF":0.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139948316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C1-genericity of unbounded distortion for ergodic conservative expanding circle maps 遍历保守扩张圆映射的无界畸变的 C1 通用性
IF 0.6 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2024-05-01 DOI: 10.1016/j.indag.2024.03.013
Hamza Ounesli
{"title":"C1-genericity of unbounded distortion for ergodic conservative expanding circle maps","authors":"Hamza Ounesli","doi":"10.1016/j.indag.2024.03.013","DOIUrl":"10.1016/j.indag.2024.03.013","url":null,"abstract":"<div><p>We prove that within the space of ergodic Lebesgue-preserving <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> uniformly expanding maps of the circle, unbounded distortion is <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-generic.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 3","pages":"Pages 523-530"},"PeriodicalIF":0.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140796320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational points in translations of the Cantor set 康托尔集平移中的有理点
IF 0.6 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2024-05-01 DOI: 10.1016/j.indag.2024.03.012
Kan Jiang , Derong Kong , Wenxia Li , Zhiqiang Wang
{"title":"Rational points in translations of the Cantor set","authors":"Kan Jiang ,&nbsp;Derong Kong ,&nbsp;Wenxia Li ,&nbsp;Zhiqiang Wang","doi":"10.1016/j.indag.2024.03.012","DOIUrl":"10.1016/j.indag.2024.03.012","url":null,"abstract":"<div><p>Given two coprime integers <span><math><mrow><mi>p</mi><mo>≥</mo><mn>2</mn></mrow></math></span> and <span><math><mrow><mi>q</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, let <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>⊂</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> consist of all rational numbers which have a finite <span><math><mi>p</mi></math></span>-ary expansion, and let <span><span><span><math><mrow><mi>K</mi><mrow><mo>(</mo><mi>q</mi><mo>,</mo><mi>A</mi><mo>)</mo></mrow><mo>=</mo><mfenced><mrow><munderover><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></munderover><mfrac><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msup></mrow></mfrac><mo>:</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>A</mi><mspace></mspace><mo>∀</mo><mi>i</mi><mo>∈</mo><mi>N</mi></mrow></mfenced><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>A</mi><mo>⊂</mo><mfenced><mrow><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>q</mi><mo>−</mo><mn>1</mn></mrow></mfenced></mrow></math></span> with cardinality <span><math><mrow><mn>1</mn><mo>&lt;</mo><mi>#</mi><mi>A</mi><mo>&lt;</mo><mi>q</mi></mrow></math></span>. In 2021 Schleischitz showed that <span><math><mrow><mi>#</mi><mrow><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>∩</mo><mi>K</mi><mrow><mo>(</mo><mi>q</mi><mo>,</mo><mi>A</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>&lt;</mo><mo>+</mo><mi>∞</mi></mrow></math></span>. In this paper we show that for any <span><math><mrow><mi>r</mi><mo>∈</mo><mi>Q</mi></mrow></math></span> and for any <span><math><mrow><mi>α</mi><mo>∈</mo><mi>R</mi></mrow></math></span>, <span><span><span><math><mrow><mi>#</mi><mrow><mo>(</mo><mrow><mrow><mo>(</mo><mi>r</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>+</mo><mi>α</mi><mo>)</mo></mrow><mo>∩</mo><mi>K</mi><mrow><mo>(</mo><mi>q</mi><mo>,</mo><mi>A</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mo>&lt;</mo><mo>+</mo><mi>∞</mi><mo>.</mo></mrow></math></span></span></span></p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 3","pages":"Pages 516-522"},"PeriodicalIF":0.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140799303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On perfect powers that are sums of cubes of a nine term arithmetic progression 关于九项算术级数立方之和的完全幂
IF 0.6 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2024-05-01 DOI: 10.1016/j.indag.2024.03.011
Nirvana Coppola , Mar Curcó-Iranzo , Maleeha Khawaja , Vandita Patel , Özge Ülkem
{"title":"On perfect powers that are sums of cubes of a nine term arithmetic progression","authors":"Nirvana Coppola ,&nbsp;Mar Curcó-Iranzo ,&nbsp;Maleeha Khawaja ,&nbsp;Vandita Patel ,&nbsp;Özge Ülkem","doi":"10.1016/j.indag.2024.03.011","DOIUrl":"10.1016/j.indag.2024.03.011","url":null,"abstract":"<div><p>We study the equation <span><math><mrow><msup><mrow><mrow><mo>(</mo><mi>x</mi><mo>−</mo><mn>4</mn><mi>r</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mrow><mo>(</mo><mi>x</mi><mo>−</mo><mn>3</mn><mi>r</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mrow><mo>(</mo><mi>x</mi><mo>−</mo><mn>2</mn><mi>r</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mrow><mo>(</mo><mi>x</mi><mo>−</mo><mi>r</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mi>r</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mn>2</mn><mi>r</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mn>3</mn><mi>r</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mn>4</mn><mi>r</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup><mo>=</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>p</mi></mrow></msup></mrow></math></span>, which is a natural continuation of previous works carried out by A. Argáez-García and the fourth author (perfect powers that are sums of cubes of a three, five and seven term arithmetic progression). Under the assumptions <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>r</mi><mo>≤</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>, <span><math><mrow><mi>p</mi><mo>≥</mo><mn>5</mn></mrow></math></span> a prime and <span><math><mrow><mo>gcd</mo><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span>, we show that solutions must satisfy <span><math><mrow><mi>x</mi><mi>y</mi><mo>=</mo><mn>0</mn></mrow></math></span>. Moreover, we study the equation for prime exponents 2 and 3 in greater detail. Under the assumptions <span><math><mrow><mi>r</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> a positive integer and <span><math><mrow><mo>gcd</mo><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> we show that there are infinitely many solutions for <span><math><mrow><mi>p</mi><mo>=</mo><mn>2</mn></mrow></math></span> and <span><math><mrow><mi>p</mi><mo>=</mo><mn>3</mn></mrow></math></span> via explicit constructions using integral points on elliptic curves. We use an amalgamation of methods in computational and algebraic number theory to overcome the increased computational challenge. Most notable is a significant computational efficiency obtained through appealing to Bilu, Hanrot and Voutier’s Primitive Divisor Theorem and the method of Chabauty, as well as employing a Thue equation solver earlier on.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 3","pages":"Pages 500-515"},"PeriodicalIF":0.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357724000296/pdfft?md5=883869d8b3a6f3a8bbf7ff0b2b89d307&pid=1-s2.0-S0019357724000296-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140806441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solvability of Vekua-type periodic operators and applications to classical equations Vekua 型周期算子的可解性及其在经典方程中的应用
IF 0.6 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2024-05-01 DOI: 10.1016/j.indag.2024.03.001
Alexandre Kirilov , Wagner Augusto Almeida de Moraes , Pedro Meyer Tokoro
{"title":"Solvability of Vekua-type periodic operators and applications to classical equations","authors":"Alexandre Kirilov ,&nbsp;Wagner Augusto Almeida de Moraes ,&nbsp;Pedro Meyer Tokoro","doi":"10.1016/j.indag.2024.03.001","DOIUrl":"10.1016/j.indag.2024.03.001","url":null,"abstract":"<div><p>In this note, we investigate Vekua-type periodic operators of the form <span><math><mrow><mi>P</mi><mi>u</mi><mo>=</mo><mi>L</mi><mi>u</mi><mo>−</mo><mi>A</mi><mi>u</mi><mo>−</mo><mi>B</mi><mover><mrow><mi>u</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow></math></span>, where <span><math><mi>L</mi></math></span> is a constant coefficient partial differential operator. We provide a complete characterization of the necessary and sufficient conditions for the solvability and global hypoellipticity of <span><math><mi>P</mi></math></span>. As an application, we provide a comprehensive characterization of Vekua-type operators associated with classical wave, heat, and Laplace equations.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 3","pages":"Pages 434-442"},"PeriodicalIF":0.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140055256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Box dimension of generic Hölder level sets 通用荷尔德水平集的盒维度
IF 0.6 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2024-05-01 DOI: 10.1016/j.indag.2024.03.015
Zoltán Buczolich , Balázs Maga
{"title":"Box dimension of generic Hölder level sets","authors":"Zoltán Buczolich ,&nbsp;Balázs Maga","doi":"10.1016/j.indag.2024.03.015","DOIUrl":"10.1016/j.indag.2024.03.015","url":null,"abstract":"<div><p>Hausdorff dimension of level sets of generic continuous functions defined on fractals can give information about the “thickness/narrow cross-sections” of a “network” corresponding to a fractal set. This leads to the definition of the topological Hausdorff dimension of fractals. Finer information might be obtained by considering the Hausdorff dimension of level sets of generic 1-Hölder-<span><math><mi>α</mi></math></span> functions, which has a stronger dependence on the geometry of the fractal, as displayed in our previous papers (Buczolich et al., 2022 [9,10]). In this paper, we extend our investigations to the lower and upper box-counting dimensions as well: while the former yields results highly resembling the ones about the Hausdorff dimension of level sets, the latter exhibits a different behavior. Instead of “finding narrow-cross sections”, results related to upper box-counting dimension “measure” how much level sets can spread out on the fractal, and how widely the generic function can “oscillate” on it. Key differences are illustrated by giving estimates concerning the Sierpiński triangle.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 3","pages":"Pages 531-554"},"PeriodicalIF":0.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357724000326/pdfft?md5=5a77b60c431ef034f802646912c24066&pid=1-s2.0-S0019357724000326-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140589791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Root numbers of a family of elliptic curves and two applications 椭圆曲线族的根号及两种应用
IF 0.6 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2024-05-01 DOI: 10.1016/j.indag.2024.04.003
Jonathan Love
{"title":"Root numbers of a family of elliptic curves and two applications","authors":"Jonathan Love","doi":"10.1016/j.indag.2024.04.003","DOIUrl":"10.1016/j.indag.2024.04.003","url":null,"abstract":"<div><p>For each <span><math><mrow><mi>t</mi><mo>∈</mo><mi>Q</mi><mo>∖</mo><mrow><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>, define an elliptic curve over <span><math><mi>Q</mi></math></span> by <span><span><span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>x</mi><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>x</mi><mo>+</mo><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>.</mo></mrow></math></span></span></span>Using a formula for the root number <span><math><mrow><mi>W</mi><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> as a function of <span><math><mi>t</mi></math></span> and assuming some standard conjectures about ranks of elliptic curves, we determine (up to a set of density zero) the set of isomorphism classes of elliptic curves <span><math><mrow><mi>E</mi><mo>/</mo><mi>Q</mi></mrow></math></span> whose Mordell–Weil group contains <span><math><mrow><mi>Z</mi><mo>×</mo><mi>Z</mi><mo>/</mo><mn>2</mn><mi>Z</mi><mo>×</mo><mi>Z</mi><mo>/</mo><mn>4</mn><mi>Z</mi></mrow></math></span>, and the set of rational numbers that can be written as a product of the slopes of two rational right triangles.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 3","pages":"Pages 555-569"},"PeriodicalIF":0.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357724000351/pdfft?md5=2bd90ba3afb1d531934bbb073c1710e2&pid=1-s2.0-S0019357724000351-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140799683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信