准阿贝尔变体上的符号卷积

Pub Date : 2024-05-01 DOI:10.1016/j.indag.2024.04.006
Jakob Bergqvist, Thuong Dang, Stefan Schröer
{"title":"准阿贝尔变体上的符号卷积","authors":"Jakob Bergqvist,&nbsp;Thuong Dang,&nbsp;Stefan Schröer","doi":"10.1016/j.indag.2024.04.006","DOIUrl":null,"url":null,"abstract":"<div><p>We study the so-called sign involutions on twisted forms of abelian varieties, and show that such a sign involution exists if and only if the class in the Weil–Châtelet group is annihilated by two. If these equivalent conditions hold, we prove that the Picard scheme of the quotient is étale and contains no points of finite order. In dimension one, such quotients are Brauer–Severi curves, and we analyze the ensuing embeddings of the genus-one curve into twisted forms of Hirzebruch surfaces and weighted projective spaces.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357724000387/pdfft?md5=204d239f9d696a1e77d8dd327376fb09&pid=1-s2.0-S0019357724000387-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Sign involutions on para-abelian varieties\",\"authors\":\"Jakob Bergqvist,&nbsp;Thuong Dang,&nbsp;Stefan Schröer\",\"doi\":\"10.1016/j.indag.2024.04.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the so-called sign involutions on twisted forms of abelian varieties, and show that such a sign involution exists if and only if the class in the Weil–Châtelet group is annihilated by two. If these equivalent conditions hold, we prove that the Picard scheme of the quotient is étale and contains no points of finite order. In dimension one, such quotients are Brauer–Severi curves, and we analyze the ensuing embeddings of the genus-one curve into twisted forms of Hirzebruch surfaces and weighted projective spaces.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0019357724000387/pdfft?md5=204d239f9d696a1e77d8dd327376fb09&pid=1-s2.0-S0019357724000387-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357724000387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了无方变体扭曲形式上的所谓符号卷积,并证明了当且仅当魏尔-夏特莱群中的类被两个湮没时,才存在这样的符号卷积。如果这些等价条件成立,我们就能证明商的皮卡方案是 étale 的,并且不包含有限阶点。在维数一中,这种商是布劳尔-塞维里曲线,我们分析了随之而来的属一曲线嵌入希尔泽布鲁赫曲面和加权投影空间的扭曲形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Sign involutions on para-abelian varieties

We study the so-called sign involutions on twisted forms of abelian varieties, and show that such a sign involution exists if and only if the class in the Weil–Châtelet group is annihilated by two. If these equivalent conditions hold, we prove that the Picard scheme of the quotient is étale and contains no points of finite order. In dimension one, such quotients are Brauer–Severi curves, and we analyze the ensuing embeddings of the genus-one curve into twisted forms of Hirzebruch surfaces and weighted projective spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信