Root numbers of a family of elliptic curves and two applications

Pub Date : 2024-05-01 DOI:10.1016/j.indag.2024.04.003
Jonathan Love
{"title":"Root numbers of a family of elliptic curves and two applications","authors":"Jonathan Love","doi":"10.1016/j.indag.2024.04.003","DOIUrl":null,"url":null,"abstract":"<div><p>For each <span><math><mrow><mi>t</mi><mo>∈</mo><mi>Q</mi><mo>∖</mo><mrow><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>, define an elliptic curve over <span><math><mi>Q</mi></math></span> by <span><span><span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>x</mi><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>x</mi><mo>+</mo><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>.</mo></mrow></math></span></span></span>Using a formula for the root number <span><math><mrow><mi>W</mi><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> as a function of <span><math><mi>t</mi></math></span> and assuming some standard conjectures about ranks of elliptic curves, we determine (up to a set of density zero) the set of isomorphism classes of elliptic curves <span><math><mrow><mi>E</mi><mo>/</mo><mi>Q</mi></mrow></math></span> whose Mordell–Weil group contains <span><math><mrow><mi>Z</mi><mo>×</mo><mi>Z</mi><mo>/</mo><mn>2</mn><mi>Z</mi><mo>×</mo><mi>Z</mi><mo>/</mo><mn>4</mn><mi>Z</mi></mrow></math></span>, and the set of rational numbers that can be written as a product of the slopes of two rational right triangles.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357724000351/pdfft?md5=2bd90ba3afb1d531934bbb073c1710e2&pid=1-s2.0-S0019357724000351-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For each tQ{1,0,1}, define an elliptic curve over Q by Et:y2=x(x+1)(x+t2).Using a formula for the root number W(Et) as a function of t and assuming some standard conjectures about ranks of elliptic curves, we determine (up to a set of density zero) the set of isomorphism classes of elliptic curves E/Q whose Mordell–Weil group contains Z×Z/2Z×Z/4Z, and the set of rational numbers that can be written as a product of the slopes of two rational right triangles.

分享
查看原文
椭圆曲线族的根号及两种应用
使用根号作为函数的公式,并假设关于椭圆曲线等级的一些标准猜想,我们确定了(直到密度为零的一组)莫德尔-韦尔群包含 ,的椭圆曲线同构类的集合,以及可以写成两个有理直角三角形斜率乘积的有理数的集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信