Nirvana Coppola , Mar Curcó-Iranzo , Maleeha Khawaja , Vandita Patel , Özge Ülkem
{"title":"On perfect powers that are sums of cubes of a nine term arithmetic progression","authors":"Nirvana Coppola , Mar Curcó-Iranzo , Maleeha Khawaja , Vandita Patel , Özge Ülkem","doi":"10.1016/j.indag.2024.03.011","DOIUrl":null,"url":null,"abstract":"<div><p>We study the equation <span><math><mrow><msup><mrow><mrow><mo>(</mo><mi>x</mi><mo>−</mo><mn>4</mn><mi>r</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mrow><mo>(</mo><mi>x</mi><mo>−</mo><mn>3</mn><mi>r</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mrow><mo>(</mo><mi>x</mi><mo>−</mo><mn>2</mn><mi>r</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mrow><mo>(</mo><mi>x</mi><mo>−</mo><mi>r</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mi>r</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mn>2</mn><mi>r</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mn>3</mn><mi>r</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mn>4</mn><mi>r</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup><mo>=</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>p</mi></mrow></msup></mrow></math></span>, which is a natural continuation of previous works carried out by A. Argáez-García and the fourth author (perfect powers that are sums of cubes of a three, five and seven term arithmetic progression). Under the assumptions <span><math><mrow><mn>0</mn><mo><</mo><mi>r</mi><mo>≤</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>, <span><math><mrow><mi>p</mi><mo>≥</mo><mn>5</mn></mrow></math></span> a prime and <span><math><mrow><mo>gcd</mo><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span>, we show that solutions must satisfy <span><math><mrow><mi>x</mi><mi>y</mi><mo>=</mo><mn>0</mn></mrow></math></span>. Moreover, we study the equation for prime exponents 2 and 3 in greater detail. Under the assumptions <span><math><mrow><mi>r</mi><mo>></mo><mn>0</mn></mrow></math></span> a positive integer and <span><math><mrow><mo>gcd</mo><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> we show that there are infinitely many solutions for <span><math><mrow><mi>p</mi><mo>=</mo><mn>2</mn></mrow></math></span> and <span><math><mrow><mi>p</mi><mo>=</mo><mn>3</mn></mrow></math></span> via explicit constructions using integral points on elliptic curves. We use an amalgamation of methods in computational and algebraic number theory to overcome the increased computational challenge. Most notable is a significant computational efficiency obtained through appealing to Bilu, Hanrot and Voutier’s Primitive Divisor Theorem and the method of Chabauty, as well as employing a Thue equation solver earlier on.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 3","pages":"Pages 500-515"},"PeriodicalIF":0.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357724000296/pdfft?md5=883869d8b3a6f3a8bbf7ff0b2b89d307&pid=1-s2.0-S0019357724000296-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000296","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the equation , which is a natural continuation of previous works carried out by A. Argáez-García and the fourth author (perfect powers that are sums of cubes of a three, five and seven term arithmetic progression). Under the assumptions , a prime and , we show that solutions must satisfy . Moreover, we study the equation for prime exponents 2 and 3 in greater detail. Under the assumptions a positive integer and we show that there are infinitely many solutions for and via explicit constructions using integral points on elliptic curves. We use an amalgamation of methods in computational and algebraic number theory to overcome the increased computational challenge. Most notable is a significant computational efficiency obtained through appealing to Bilu, Hanrot and Voutier’s Primitive Divisor Theorem and the method of Chabauty, as well as employing a Thue equation solver earlier on.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.