On moments and symmetrical sequences

Pub Date : 2024-05-01 DOI:10.1016/j.indag.2024.04.008
Jiten Ahuja, Ricardo Estrada
{"title":"On moments and symmetrical sequences","authors":"Jiten Ahuja,&nbsp;Ricardo Estrada","doi":"10.1016/j.indag.2024.04.008","DOIUrl":null,"url":null,"abstract":"<div><p>In this article we consider questions related to the behavior of the moments <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>m</mi></mrow></msub><mfenced><mrow><mfenced><mrow><msub><mrow><mi>z</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></mfenced></mrow></mfenced></mrow></math></span> when the indices are restricted to specific subsequences of integers, such as the even or odd moments. If <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></math></span> we introduce the notion of symmetrical series of order <span><math><mrow><mi>n</mi><mo>,</mo></mrow></math></span> showing that if <span><math><mrow><mfenced><mrow><msub><mrow><mi>z</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></mfenced><mspace></mspace></mrow></math></span> is symmetrical then <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>m</mi></mrow></msub><mfenced><mrow><mfenced><mrow><msub><mrow><mi>z</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></mfenced></mrow></mfenced><mo>=</mo><mn>0</mn></mrow></math></span> whenever <span><math><mrow><mi>n</mi><mo>∤</mo><mi>m</mi><mo>;</mo></mrow></math></span> in particular, the odd moments of a symmetrical series of order 2 vanish. We prove that when <span><math><mrow><mfenced><mrow><msub><mrow><mi>z</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></mfenced><mo>∈</mo><msup><mrow><mi>l</mi></mrow><mrow><mi>p</mi></mrow></msup></mrow></math></span> for some <span><math><mi>p</mi></math></span> then several results characterizing the sequence from its moments hold. We show, in particular, that if <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>m</mi></mrow></msub><mfenced><mrow><mfenced><mrow><msub><mrow><mi>z</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></mfenced></mrow></mfenced><mo>=</mo><mn>0</mn></mrow></math></span> whenever <span><math><mrow><mi>n</mi><mo>∤</mo><mi>m</mi></mrow></math></span> then <span><math><mfenced><mrow><msub><mrow><mi>z</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></mfenced></math></span> is a rearrangement of a symmetrical series of order <span><math><mrow><mi>n</mi><mo>.</mo></mrow></math></span> We then construct examples of sequences whose moments vanish with required density. Lastly, we construct counterexamples of several of the results valid in the <span><math><msup><mrow><mi>l</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> case if we allow the moment series to be all <em>conditionally convergent</em>. We show that for each <em>arbitrary</em> sequence of real numbers <span><math><msubsup><mrow><mfenced><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></mfenced></mrow><mrow><mi>m</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> there are real sequences <span><math><msubsup><mrow><mfenced><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></mfenced></mrow><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> such that <span><span><span><math><mrow><munderover><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></munderover><msubsup><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow><mrow><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msubsup><mo>=</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>m</mi></mrow></msub><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mi>m</mi><mo>≥</mo><mn>0</mn><mspace></mspace><mo>.</mo></mrow></math></span></span></span></p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we consider questions related to the behavior of the moments Mmzj when the indices are restricted to specific subsequences of integers, such as the even or odd moments. If n2 we introduce the notion of symmetrical series of order n, showing that if zj is symmetrical then Mmzj=0 whenever nm; in particular, the odd moments of a symmetrical series of order 2 vanish. We prove that when zjlp for some p then several results characterizing the sequence from its moments hold. We show, in particular, that if Mmzj=0 whenever nm then zj is a rearrangement of a symmetrical series of order n. We then construct examples of sequences whose moments vanish with required density. Lastly, we construct counterexamples of several of the results valid in the lp case if we allow the moment series to be all conditionally convergent. We show that for each arbitrary sequence of real numbers μmm=0 there are real sequences ujj=0 such that j=0uj2m+1=μmm0.

分享
查看原文
关于矩和对称序列
在这篇文章中,我们考虑了当指数被限制在特定的整数子序列(如偶数矩或奇数矩)时,与矩 Mmzj 的行为有关的问题。当 n≥2 时,我们引入 n 阶对称数列的概念,证明当 n∤m 时,如果 zj 是对称的,那么 Mmzj=0 ;特别是,2 阶对称数列的奇矩消失。我们证明,当某个 p 的 zj∈lp 时,从矩数出发描述序列特征的几个结果都成立。我们特别证明,如果 Mmzj=0 时 n∤m,则 zj 是 n 阶对称数列的重排。最后,如果我们允许矩数列都有条件收敛,那么我们将构造在 lp 情形下有效的几个结果的反例。我们证明,对于每个任意实数序列 μmm=0∞ 都存在实数序列 ujj=0∞ ,使得 ∑j=0∞uj2m+1=μmm≥0 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信