{"title":"定向遍历性,弱混合和混合Zd-和<m","authors":"","doi":"10.1016/j.indag.2023.06.006","DOIUrl":null,"url":null,"abstract":"<div><p>For a measure preserving <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>- or <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-action <span><math><mi>T</mi></math></span>, on a Lebesgue probability space <span><math><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow></math></span>, and a linear subspace <span><math><mrow><mi>L</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span>, we define notions of direction <span><math><mi>L</mi></math></span> ergodicity, weak mixing, and strong mixing. For <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions, it is clear that these direction <span><math><mi>L</mi></math></span> properties should correspond to the same properties for the restriction of <span><math><mi>T</mi></math></span> to <span><math><mi>L</mi></math></span>. But since an arbitrary <span><math><mrow><mi>L</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span> does not necessarily correspond to a nontrivial subgroup of <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, a different approach is needed for <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions. In this case, we define direction <span><math><mi>L</mi></math></span> ergodicity, weak mixing, and mixing in terms of the restriction of the unit suspension <span><math><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> to <span><math><mi>L</mi></math></span>, but also restricted to the subspace of <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mover><mrow><mi>X</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>,</mo><mover><mrow><mi>μ</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span> perpendicular to the suspension direction. For <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions, we show (as is more or less clear for <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>) that these directional properties are spectral properties. For weak mixing <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>- and <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions, we show that directional ergodicity is equivalent to directional weak mixing. For ergodic <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions <span><math><mi>T</mi></math></span>, we explore the relationship between direction <span><math><mi>L</mi></math></span> properties as defined via unit suspensions and embeddings of <span><math><mi>T</mi></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions. Finally, the structure of possible sets of non-ergodic and non-weakly mixing directions is determined, and genericity questions are discussed.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 5","pages":"Pages 837-864"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Directional ergodicity, weak mixing and mixing for Zd- and Rd-actions\",\"authors\":\"\",\"doi\":\"10.1016/j.indag.2023.06.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a measure preserving <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>- or <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-action <span><math><mi>T</mi></math></span>, on a Lebesgue probability space <span><math><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow></math></span>, and a linear subspace <span><math><mrow><mi>L</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span>, we define notions of direction <span><math><mi>L</mi></math></span> ergodicity, weak mixing, and strong mixing. For <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions, it is clear that these direction <span><math><mi>L</mi></math></span> properties should correspond to the same properties for the restriction of <span><math><mi>T</mi></math></span> to <span><math><mi>L</mi></math></span>. But since an arbitrary <span><math><mrow><mi>L</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span> does not necessarily correspond to a nontrivial subgroup of <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, a different approach is needed for <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions. In this case, we define direction <span><math><mi>L</mi></math></span> ergodicity, weak mixing, and mixing in terms of the restriction of the unit suspension <span><math><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> to <span><math><mi>L</mi></math></span>, but also restricted to the subspace of <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mover><mrow><mi>X</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>,</mo><mover><mrow><mi>μ</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span> perpendicular to the suspension direction. For <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions, we show (as is more or less clear for <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>) that these directional properties are spectral properties. For weak mixing <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>- and <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions, we show that directional ergodicity is equivalent to directional weak mixing. For ergodic <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions <span><math><mi>T</mi></math></span>, we explore the relationship between direction <span><math><mi>L</mi></math></span> properties as defined via unit suspensions and embeddings of <span><math><mi>T</mi></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions. Finally, the structure of possible sets of non-ergodic and non-weakly mixing directions is determined, and genericity questions are discussed.</p></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"35 5\",\"pages\":\"Pages 837-864\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357723000605\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000605","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
对于 Lebesgue 概率空间 (X,μ) 上的保度 Zd 或 Rd 作用 T 和线性子空间 L⊆Rd,我们定义了方向 L 的遍历性、弱混合和强混合的概念。但由于任意的 L⊆Rd 不一定对应于 Zd 的一个非难子群,因此需要对 Zd 作用采用不同的方法。在这种情况下,我们用单位悬浮 T˜对 L 的限制来定义方向 L 的遍历性、弱混合和混合,但也限制在垂直于悬浮方向的 L2(X˜,μ˜) 子空间。对于 Zd-作用,我们证明(对于 Rd 或多或少是清楚的)这些方向特性是光谱特性。对于弱混合 Zd- 和 Rd-作用,我们证明了方向遍历性等同于方向弱混合。对于遍历 Zd-作用 T,我们探讨了通过单位悬浮定义的方向 L 特性与 T 在 Rd-作用中的嵌入之间的关系。最后,我们确定了非遍历和非弱混合方向的可能集合的结构,并讨论了通性问题。
Directional ergodicity, weak mixing and mixing for Zd- and Rd-actions
For a measure preserving - or -action , on a Lebesgue probability space , and a linear subspace , we define notions of direction ergodicity, weak mixing, and strong mixing. For -actions, it is clear that these direction properties should correspond to the same properties for the restriction of to . But since an arbitrary does not necessarily correspond to a nontrivial subgroup of , a different approach is needed for -actions. In this case, we define direction ergodicity, weak mixing, and mixing in terms of the restriction of the unit suspension to , but also restricted to the subspace of perpendicular to the suspension direction. For -actions, we show (as is more or less clear for ) that these directional properties are spectral properties. For weak mixing - and -actions, we show that directional ergodicity is equivalent to directional weak mixing. For ergodic -actions , we explore the relationship between direction properties as defined via unit suspensions and embeddings of in -actions. Finally, the structure of possible sets of non-ergodic and non-weakly mixing directions is determined, and genericity questions are discussed.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.