The (reflected) Eberlein convolution of measures

IF 0.5 4区 数学 Q3 MATHEMATICS
{"title":"The (reflected) Eberlein convolution of measures","authors":"","doi":"10.1016/j.indag.2023.10.005","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the properties of the Eberlein convolution of measures and introduce a reflected version of it. For functions we show that the reflected Eberlein convolution can be seen as a translation invariant function-valued inner product. We study its regularity properties and show its existence on suitable sets of functions. For translation bounded measures we show that the (reflected) Eberlein convolution always exists along subsequences of the given sequence, and is a weakly almost periodic and Fourier transformable measure. We prove that if one of the two measures is mean almost periodic, then the (reflected) Eberlein convolution is strongly almost periodic. Moreover, if one of the measures is norm almost periodic, so is the (reflected) Eberlein convolution.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 5","pages":"Pages 959-988"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000976","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the properties of the Eberlein convolution of measures and introduce a reflected version of it. For functions we show that the reflected Eberlein convolution can be seen as a translation invariant function-valued inner product. We study its regularity properties and show its existence on suitable sets of functions. For translation bounded measures we show that the (reflected) Eberlein convolution always exists along subsequences of the given sequence, and is a weakly almost periodic and Fourier transformable measure. We prove that if one of the two measures is mean almost periodic, then the (reflected) Eberlein convolution is strongly almost periodic. Moreover, if one of the measures is norm almost periodic, so is the (reflected) Eberlein convolution.

度量的(反射)艾伯林卷积
在本文中,我们研究了度量的埃伯林卷积的性质,并引入了它的反射版本。对于函数,我们证明反射埃伯林卷积可视为平移不变的函数值内积。我们研究了它的正则特性,并证明了它在合适的函数集合上的存在性。对于平移有界的度量,我们证明了(反射)艾伯林卷积总是沿着给定序列的子序列存在,并且是一种弱几乎周期性的可傅里叶变换度量。我们证明,如果两个度量中的一个是平均几乎周期性的,那么(反射)艾伯林卷积就是强几乎周期性的。此外,如果其中一个度量是常模几乎周期性的,那么(反射的)艾伯林卷积也是常模几乎周期性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信