{"title":"Directional ergodicity, weak mixing and mixing for Zd- and Rd-actions","authors":"","doi":"10.1016/j.indag.2023.06.006","DOIUrl":null,"url":null,"abstract":"<div><p>For a measure preserving <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>- or <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-action <span><math><mi>T</mi></math></span>, on a Lebesgue probability space <span><math><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow></math></span>, and a linear subspace <span><math><mrow><mi>L</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span>, we define notions of direction <span><math><mi>L</mi></math></span> ergodicity, weak mixing, and strong mixing. For <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions, it is clear that these direction <span><math><mi>L</mi></math></span> properties should correspond to the same properties for the restriction of <span><math><mi>T</mi></math></span> to <span><math><mi>L</mi></math></span>. But since an arbitrary <span><math><mrow><mi>L</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span> does not necessarily correspond to a nontrivial subgroup of <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, a different approach is needed for <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions. In this case, we define direction <span><math><mi>L</mi></math></span> ergodicity, weak mixing, and mixing in terms of the restriction of the unit suspension <span><math><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> to <span><math><mi>L</mi></math></span>, but also restricted to the subspace of <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mover><mrow><mi>X</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>,</mo><mover><mrow><mi>μ</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span> perpendicular to the suspension direction. For <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions, we show (as is more or less clear for <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>) that these directional properties are spectral properties. For weak mixing <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>- and <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions, we show that directional ergodicity is equivalent to directional weak mixing. For ergodic <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions <span><math><mi>T</mi></math></span>, we explore the relationship between direction <span><math><mi>L</mi></math></span> properties as defined via unit suspensions and embeddings of <span><math><mi>T</mi></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions. Finally, the structure of possible sets of non-ergodic and non-weakly mixing directions is determined, and genericity questions are discussed.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 5","pages":"Pages 837-864"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000605","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For a measure preserving - or -action , on a Lebesgue probability space , and a linear subspace , we define notions of direction ergodicity, weak mixing, and strong mixing. For -actions, it is clear that these direction properties should correspond to the same properties for the restriction of to . But since an arbitrary does not necessarily correspond to a nontrivial subgroup of , a different approach is needed for -actions. In this case, we define direction ergodicity, weak mixing, and mixing in terms of the restriction of the unit suspension to , but also restricted to the subspace of perpendicular to the suspension direction. For -actions, we show (as is more or less clear for ) that these directional properties are spectral properties. For weak mixing - and -actions, we show that directional ergodicity is equivalent to directional weak mixing. For ergodic -actions , we explore the relationship between direction properties as defined via unit suspensions and embeddings of in -actions. Finally, the structure of possible sets of non-ergodic and non-weakly mixing directions is determined, and genericity questions are discussed.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.