Directional ergodicity, weak mixing and mixing for Zd- and Rd-actions

IF 0.5 4区 数学 Q3 MATHEMATICS
{"title":"Directional ergodicity, weak mixing and mixing for Zd- and Rd-actions","authors":"","doi":"10.1016/j.indag.2023.06.006","DOIUrl":null,"url":null,"abstract":"<div><p>For a measure preserving <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>- or <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-action <span><math><mi>T</mi></math></span>, on a Lebesgue probability space <span><math><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow></math></span>, and a linear subspace <span><math><mrow><mi>L</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span>, we define notions of direction <span><math><mi>L</mi></math></span> ergodicity, weak mixing, and strong mixing. For <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions, it is clear that these direction <span><math><mi>L</mi></math></span> properties should correspond to the same properties for the restriction of <span><math><mi>T</mi></math></span> to <span><math><mi>L</mi></math></span>. But since an arbitrary <span><math><mrow><mi>L</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span> does not necessarily correspond to a nontrivial subgroup of <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, a different approach is needed for <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions. In this case, we define direction <span><math><mi>L</mi></math></span> ergodicity, weak mixing, and mixing in terms of the restriction of the unit suspension <span><math><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> to <span><math><mi>L</mi></math></span>, but also restricted to the subspace of <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mover><mrow><mi>X</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>,</mo><mover><mrow><mi>μ</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span> perpendicular to the suspension direction. For <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions, we show (as is more or less clear for <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>) that these directional properties are spectral properties. For weak mixing <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>- and <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions, we show that directional ergodicity is equivalent to directional weak mixing. For ergodic <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions <span><math><mi>T</mi></math></span>, we explore the relationship between direction <span><math><mi>L</mi></math></span> properties as defined via unit suspensions and embeddings of <span><math><mi>T</mi></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-actions. Finally, the structure of possible sets of non-ergodic and non-weakly mixing directions is determined, and genericity questions are discussed.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 5","pages":"Pages 837-864"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000605","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a measure preserving Zd- or Rd-action T, on a Lebesgue probability space (X,μ), and a linear subspace LRd, we define notions of direction L ergodicity, weak mixing, and strong mixing. For Rd-actions, it is clear that these direction L properties should correspond to the same properties for the restriction of T to L. But since an arbitrary LRd does not necessarily correspond to a nontrivial subgroup of Zd, a different approach is needed for Zd-actions. In this case, we define direction L ergodicity, weak mixing, and mixing in terms of the restriction of the unit suspension T˜ to L, but also restricted to the subspace of L2(X˜,μ˜) perpendicular to the suspension direction. For Zd-actions, we show (as is more or less clear for Rd) that these directional properties are spectral properties. For weak mixing Zd- and Rd-actions, we show that directional ergodicity is equivalent to directional weak mixing. For ergodic Zd-actions T, we explore the relationship between direction L properties as defined via unit suspensions and embeddings of T in Rd-actions. Finally, the structure of possible sets of non-ergodic and non-weakly mixing directions is determined, and genericity questions are discussed.

定向遍历性,弱混合和混合Zd-和
对于 Lebesgue 概率空间 (X,μ) 上的保度 Zd 或 Rd 作用 T 和线性子空间 L⊆Rd,我们定义了方向 L 的遍历性、弱混合和强混合的概念。但由于任意的 L⊆Rd 不一定对应于 Zd 的一个非难子群,因此需要对 Zd 作用采用不同的方法。在这种情况下,我们用单位悬浮 T˜对 L 的限制来定义方向 L 的遍历性、弱混合和混合,但也限制在垂直于悬浮方向的 L2(X˜,μ˜) 子空间。对于 Zd-作用,我们证明(对于 Rd 或多或少是清楚的)这些方向特性是光谱特性。对于弱混合 Zd- 和 Rd-作用,我们证明了方向遍历性等同于方向弱混合。对于遍历 Zd-作用 T,我们探讨了通过单位悬浮定义的方向 L 特性与 T 在 Rd-作用中的嵌入之间的关系。最后,我们确定了非遍历和非弱混合方向的可能集合的结构,并讨论了通性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信