Pure point diffraction and entropy beyond the Euclidean space

IF 0.5 4区 数学 Q3 MATHEMATICS
T. Hauser
{"title":"Pure point diffraction and entropy beyond the Euclidean space","authors":"T. Hauser","doi":"10.1016/j.indag.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>For Euclidean pure point diffractive Delone sets of finite local complexity and with uniform patch frequencies it is well known that the patch counting entropy computed along the closed centred balls is zero. We consider such sets in the setting of <span><math><mi>σ</mi></math></span>-compact locally compact Abelian groups and show that the topological entropy of the associated Delone dynamical system is zero. For this we provide a suitable version of the variational principle. We furthermore construct counterexamples, which show that the patch counting entropy of such sets can be non-zero in this context. Other counterexamples will show that the patch counting entropy of such a set cannot be computed along a limit and even be infinite in this setting.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 5","pages":"Pages 1057-1074"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357724000818/pdfft?md5=37da9342f84d0427094033cf2fe72940&pid=1-s2.0-S0019357724000818-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000818","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For Euclidean pure point diffractive Delone sets of finite local complexity and with uniform patch frequencies it is well known that the patch counting entropy computed along the closed centred balls is zero. We consider such sets in the setting of σ-compact locally compact Abelian groups and show that the topological entropy of the associated Delone dynamical system is zero. For this we provide a suitable version of the variational principle. We furthermore construct counterexamples, which show that the patch counting entropy of such sets can be non-zero in this context. Other counterexamples will show that the patch counting entropy of such a set cannot be computed along a limit and even be infinite in this setting.

超越欧几里得空间的纯点衍射和熵
众所周知,对于具有有限局部复杂性和均匀斑块频率的欧几里得纯点衍射 Delone 集,沿封闭中心球计算的斑块计数熵为零。我们在 σ 紧凑局部紧凑阿贝尔群的背景下考虑这类集合,并证明相关 Delone 动力系统的拓扑熵为零。为此,我们提供了变分原理的合适版本。我们还进一步构造了反例,证明在这种情况下,此类集合的补丁计数熵可以非零。其他反例将表明,这种集合的补丁计数熵无法沿极限计算,在这种情况下甚至是无限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信