Correlation functions of the Rudin–Shapiro sequence

IF 0.5 4区 数学 Q3 MATHEMATICS
{"title":"Correlation functions of the Rudin–Shapiro sequence","authors":"","doi":"10.1016/j.indag.2023.03.003","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper, we show that all odd-point correlation functions of the balanced Rudin–Shapiro sequence vanish and that all even-point correlation functions depend only on a single number, which holds for any weighted correlation function as well. For the four-point correlation functions, we provide a more detailed exposition which reveals some arithmetic structures and symmetries. In particular, we show that one can obtain the autocorrelation coefficients of its topological factor with maximal </span>pure point spectrum among them.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 5","pages":"Pages 771-795"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000241","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we show that all odd-point correlation functions of the balanced Rudin–Shapiro sequence vanish and that all even-point correlation functions depend only on a single number, which holds for any weighted correlation function as well. For the four-point correlation functions, we provide a more detailed exposition which reveals some arithmetic structures and symmetries. In particular, we show that one can obtain the autocorrelation coefficients of its topological factor with maximal pure point spectrum among them.

Rudin-Shapiro序列的相关函数
在本文中,我们证明了平衡鲁丁-夏皮罗序列的所有奇数点相关函数都消失了,所有偶数点相关函数都只取决于一个数字,这对任何加权相关函数都是成立的。对于四点相关函数,我们进行了更详细的阐述,揭示了一些算术结构和对称性。特别是,我们证明了可以得到其中纯点谱最大的拓扑因子的自相关系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信