{"title":"Catalan numbers as discrepancies for a family of substitutions on infinite alphabets","authors":"","doi":"10.1016/j.indag.2023.06.010","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this work, we consider a class of substitutions on infinite alphabets and show that they exhibit a growth behaviour which is impossible for substitutions on finite alphabets. While for both settings the leading term of the tile counting function is exponential (and guided by the inflation factor), the behaviour of the second-order term is strikingly different. For the finite setting, it is known that the second term is also exponential or exponential times a polynomial. We exhibit a large family of examples where the second term is at least exponential in </span><span><math><mi>n</mi></math></span> divided by half-integer powers of <span><math><mi>n</mi></math></span>, where <span><math><mi>n</mi></math></span><span> is the number of substitution steps. In particular, we provide an identity for this discrepancy in terms of linear combinations of Catalan numbers.</span></p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we consider a class of substitutions on infinite alphabets and show that they exhibit a growth behaviour which is impossible for substitutions on finite alphabets. While for both settings the leading term of the tile counting function is exponential (and guided by the inflation factor), the behaviour of the second-order term is strikingly different. For the finite setting, it is known that the second term is also exponential or exponential times a polynomial. We exhibit a large family of examples where the second term is at least exponential in divided by half-integer powers of , where is the number of substitution steps. In particular, we provide an identity for this discrepancy in terms of linear combinations of Catalan numbers.
在这项工作中,我们考虑了无限字母表上的一类替换,并证明它们表现出一种增长行为,而有限字母表上的替换是不可能出现这种增长行为的。虽然在这两种情况下,瓦片计数函数的前导项都是指数型的(并由膨胀因子引导),但二阶项的行为却截然不同。对于有限设置,已知第二阶项也是指数或指数乘以多项式。我们展示了一大类例子,其中第二项至少是 n 的指数除以 n 的半整数幂,其中 n 是替换步数。特别是,我们用加泰罗尼亚数的线性组合为这种差异提供了一个标识。