Catalan numbers as discrepancies for a family of substitutions on infinite alphabets

Pub Date : 2024-09-01 DOI:10.1016/j.indag.2023.06.010
{"title":"Catalan numbers as discrepancies for a family of substitutions on infinite alphabets","authors":"","doi":"10.1016/j.indag.2023.06.010","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this work, we consider a class of substitutions on infinite alphabets and show that they exhibit a growth behaviour which is impossible for substitutions on finite alphabets. While for both settings the leading term of the tile counting function is exponential (and guided by the inflation factor), the behaviour of the second-order term is strikingly different. For the finite setting, it is known that the second term is also exponential or exponential times a polynomial. We exhibit a large family of examples where the second term is at least exponential in </span><span><math><mi>n</mi></math></span> divided by half-integer powers of <span><math><mi>n</mi></math></span>, where <span><math><mi>n</mi></math></span><span> is the number of substitution steps. In particular, we provide an identity for this discrepancy in terms of linear combinations of Catalan numbers.</span></p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we consider a class of substitutions on infinite alphabets and show that they exhibit a growth behaviour which is impossible for substitutions on finite alphabets. While for both settings the leading term of the tile counting function is exponential (and guided by the inflation factor), the behaviour of the second-order term is strikingly different. For the finite setting, it is known that the second term is also exponential or exponential times a polynomial. We exhibit a large family of examples where the second term is at least exponential in n divided by half-integer powers of n, where n is the number of substitution steps. In particular, we provide an identity for this discrepancy in terms of linear combinations of Catalan numbers.

分享
查看原文
加泰罗尼亚语数字作为无穷大字母替换族的差异
在这项工作中,我们考虑了无限字母表上的一类替换,并证明它们表现出一种增长行为,而有限字母表上的替换是不可能出现这种增长行为的。虽然在这两种情况下,瓦片计数函数的前导项都是指数型的(并由膨胀因子引导),但二阶项的行为却截然不同。对于有限设置,已知第二阶项也是指数或指数乘以多项式。我们展示了一大类例子,其中第二项至少是 n 的指数除以 n 的半整数幂,其中 n 是替换步数。特别是,我们用加泰罗尼亚数的线性组合为这种差异提供了一个标识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信