Malú Grave, Renato Vaz Linn, Armando Miguel Awruch
{"title":"Control of Shallow Water Flows Using an Optimization Procedure and Finite Element Analysis","authors":"Malú Grave, Renato Vaz Linn, Armando Miguel Awruch","doi":"10.1007/s10494-024-00587-7","DOIUrl":"10.1007/s10494-024-00587-7","url":null,"abstract":"<div><p>A new approach using optimization techniques for controlling water flows is proposed in this work. The investigated problem is related to shallow water flows where a given time-evolution of outflow should be determined in order to control water elevation at some region. Typical applications are problems involving the control of movable barriers or water flowing through floodgates to prevent inundation. Usually, this type of problem is solved using gradient-based control techniques which can provide complex solutions that can be difficult to be implemented in practical situations. Here, the shape of the outflow discharge along time is predefined by a curve parametrization and used as design variable of an optimization problem. The shallow water equations are evaluated using the Finite Element Method (FEM). Numerical applications of water height control are presented and the different shapes of water outflow are investigated and discussed. As a result, the present framework can solve optimal flow control problems where an outflow discharge must satisfy a given type of variation along time.\u0000</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"114 1","pages":"177 - 198"},"PeriodicalIF":2.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Turbulence-Radiation Interaction Effects on Liquid Fuel Droplet Evaporation in Spraying Combustion Flow Using Large Eddy Simulation","authors":"Mehdi Ghiyasi, Farzad Bazdidi-Tehrani","doi":"10.1007/s10494-024-00584-w","DOIUrl":"10.1007/s10494-024-00584-w","url":null,"abstract":"<div><p>The objective of the present article is to address the influence of turbulence-radiation interactions (TRI) on parameters associated with the evaporation rate of fuel droplets in the spray combustion of a fuel mixture containing <span>({text{C}}_{10}{text{H}}_{22})</span> within a model combustor. Variables such as turbulence kinetic energy, TRI factors, and temperature distributions, particularly at the sub-grid scale, are investigated utilizing the large eddy simulation approach. Also, parameters including the pattern factor and <span>(text{NO})</span> concentration at the combustor outlet are assessed. The Eulerian approach to simulate the gaseous phase and the Lagrangian approach to model the liquid phase are employed. A two-way is used to couple their interactions, excluding the secondary breakup due to the Weber number being less than unity. The wall-adapting local eddy-viscosity model is adopted to simulate the eddy viscosity. The discrete ordinates method with the weighted-sum-of-gray-gases model is applied for thermal radiation calculating absorptivity and emissivity. The probability density function is utilized for modeling combustion. Results indicate that considering TRI facilitates the vaporization of fuel droplets due to accelerating the breakup process of the largest droplets by 3.36%, increasing their volumetric heat capacity by 4.50%, and reducing the penetration length by 10 mm. Furthermore, the maximum <span>(text{NO})</span> pollutant concentration at the combustor outlet decreases from 11.64 to 9.84 ppm, and PF reduces from 0.034 to 0.011 in the presence of both resolved and sub-grid scale TRI.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"114 1","pages":"323 - 358"},"PeriodicalIF":2.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aravind Ramachandran, Rajat Soni, Markus Roßmann, Marc Klawitter, Clemens Gößnitzer, Jakob Woisetschläger, Anton Tilz, Gerhard Pirker, Andreas Wimmer
{"title":"High Speed Particle Image Velocimetry in a Large Engine Prechamber","authors":"Aravind Ramachandran, Rajat Soni, Markus Roßmann, Marc Klawitter, Clemens Gößnitzer, Jakob Woisetschläger, Anton Tilz, Gerhard Pirker, Andreas Wimmer","doi":"10.1007/s10494-024-00572-0","DOIUrl":"10.1007/s10494-024-00572-0","url":null,"abstract":"<div><p>Planar velocity measurements using the particle image velocimetry technique have been performed at a repetition rate of 10 kHz in the prechamber of a large bore gas engine mounted on a rapid compression machine (RCM), to visualize the velocity fields in the non-reacting gas flow during a compression stroke. The prechamber investigated in this work is a prototype with modifications made to facilitate optical access, and it is mounted axially on the RCM combustion chamber. The parameters of the compression stroke in the RCM are set to achieve a compression ratio of 10. After removing outlying data based on pressure and piston displacement curves, PIV data from compression strokes were analyzed. The time-resolved velocity fields capture the formation and motion of a tumble vortex in the imaged plane. Mean flow fields obtained by phase averaging across the datasets are presented, showing the development of the flow field in the prechamber throughout the compression stroke. The data obtained will be used to validate CFD simulations.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"113 4","pages":"1003 - 1023"},"PeriodicalIF":2.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-024-00572-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ehsan Habibi Siyahpoosh, Mohammad Reza Ansari, Khosro Sheikhi, Sadegh Ahmadi
{"title":"Numerical Simulation of Hydrodynamic Noises during Bubble Rising Process","authors":"Ehsan Habibi Siyahpoosh, Mohammad Reza Ansari, Khosro Sheikhi, Sadegh Ahmadi","doi":"10.1007/s10494-024-00582-y","DOIUrl":"10.1007/s10494-024-00582-y","url":null,"abstract":"<div><p>Noise analysis is one of the most efficient and newest methods to investigate dynamic behaviors of any system. In this study, hydrodynamic noises of a single bubble are scrutinized by applying Curle's acoustic analogy as implemented in OpenFoam® v2012. Meanwhile, a new solver (interAcousticFoam) is developed to hydroacoustically evaluate the noise sources. A three-dimensional transient incompressible two-phase flow model is simulated based on the hybrid method (the volume of fluid (VOF) method and Curle’s analogy method) to predict the acoustic emission characteristics of the single bubble. The pressure fluctuations are measured by adding the scale adaptive simulation (SAS) concept to the unsteady reynolds-averaged Navier–Stokes (URANS) simulation, which resulted in precise extraction of the flow fluctuations and thus the accurate simulation of the acoustic pressure fluctuations is achieved. Additionally, the analysis of the noise production mechanism is developed by implementing the Acoustic Perturbation Equations (APE) in the new solver. An alternative version of the acoustic technique is proposed to estimate the acoustic pressure fluctuations during the bubble rising process at an orifice submerged in water. The dynamic responses and the time–frequency analyses of the bubble indicate that the numerical simulation covers the main features of the principal acoustic components and can successfully predict the natural frequency of the bubble’s dynamic behaviors.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"114 1","pages":"299 - 322"},"PeriodicalIF":2.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Aerodynamic Breakup and Interactions of Evaporating Water Droplets with a Propagating Shock Wave","authors":"Zhiwei Huang, Ruixuan Zhu, Martin Davy","doi":"10.1007/s10494-024-00581-z","DOIUrl":"10.1007/s10494-024-00581-z","url":null,"abstract":"<div><p>The aerodynamic breakup physics of water droplets in shock–laden flows are investigated in this study. One-dimensional numerical simulations based on a hybrid Eulerian–Lagrangian approach are performed to study the interactions between propagating shock waves and monodispersed evaporating water droplets with breakup. Two-way coupling for the interphase exchanges of mass, momentum, and energy is considered for the two-phase gas–droplet flows. Parametric study on the droplet evaporation, motion, heating, and breakup dynamics is performed, through considering initial droplet diameters of 20–80 μm and incident shock Mach numbers (<span>({M}_{0})</span>) of 1.3–4.0. The resultant initial droplet Weber numbers range between 10.0 and 4758.3, which cover the bag, bag-and-stamen, sheet stripping, and wave crest stripping breakup modes. The distance for breakup completion behind the transmitted shock and the resultant diameter all decrease with increased incident shock Mach number. When <span>({M}_{0})</span> ≥ 2.1, shock attenuation is also intensified with droplet diameter besides volume fraction under fixed droplet mass loading. Furthermore, net momentum transfer from the droplets to carrier gas (instead of in the opposite direction as extensively observed) occurs when <span>({M}_{0})</span> ≥ 2.1, mainly caused by the high temperature of post-shock gas and small diameter of broken droplets under strong incident shocks. A scale analysis shows that the momentum and energy transfer rates because of droplet evaporation have comparable magnitudes respectively to the counterparts from drag force and convective heat transfer. This is particularly true in the regions far off the shock front when <span>({M}_{0})</span> ≥ 2.1.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"114 1","pages":"243 - 273"},"PeriodicalIF":2.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wencan Wu, Luis Laguarda, Davide Modesti, Stefan Hickel
{"title":"Passive Control of Shock-Wave/Turbulent Boundary-Layer Interaction Using Spanwise Heterogeneous Roughness","authors":"Wencan Wu, Luis Laguarda, Davide Modesti, Stefan Hickel","doi":"10.1007/s10494-024-00580-0","DOIUrl":"https://doi.org/10.1007/s10494-024-00580-0","url":null,"abstract":"<p>A novel passive flow-control method for shock-wave/turbulent boundary-layer interactions (STBLI) is investigated. The method relies on a structured roughness pattern constituted by streamwise-aligned ridges. Its effectiveness is assessed with wall-resolved large-eddy simulations of the interaction of a Mach 2 turbulent boundary layer flow with an oblique impinging shock with shock angle <span>(40^circ)</span>. The structured roughness pattern, which is fully resolved by a cut-cell based immersed boundary method, covers the entire computational domain. Results show that this rough surface induces large-scale secondary streamwise vortices, which energize the boundary layer by transporting high-speed fluid closer to the wall. A parametric study is performed to investigate the effect of the spacing between the ridges. This investigation is further substantiated through spectral analysis and sparsity-promoting dynamic mode decomposition. We find that ridges with small spacing effectively mitigate the low-frequency unsteadiness of STBLI and slightly reduce total-pressure loss.</p>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"14 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Donatella Passiatore, Jonathan M. Wang, Diego Rossinelli, Mario Di Renzo, Gianluca Iaccarino
{"title":"Computational Study of Laser-Induced Modes of Ignition in a Coflow Combustor","authors":"Donatella Passiatore, Jonathan M. Wang, Diego Rossinelli, Mario Di Renzo, Gianluca Iaccarino","doi":"10.1007/s10494-024-00575-x","DOIUrl":"10.1007/s10494-024-00575-x","url":null,"abstract":"<div><p>This study investigates laser-induced ignition in a model-rocket combustor through computational simulations. The primary focus is on characterizing successful and unsuccessful ignition scenarios and elucidating the underlying physical mechanisms. Large Eddy simulations (LESs) are utilized to explore laser-based forced ignition in a methane–oxygen combustor, with attention given to the intricate interplay of factors such as initial condition variability and turbulent flow field. Perturbations in laser parameters and initial flow conditions introduce stochastic behavior, revealing critical insights into ignition location relative to the fuel-oxidizer mixture. A significant methodological innovation lies in the adaptation of established image analysis techniques to track and monitor the transport of hot packets within the flow field. By extending these tools, the study provides insights into the interaction between ignition kernels and flammable gases, offering a more comprehensive understanding of the phenomenon. Results highlight the interplay between hydrodynamic ejections from the laser spark and turbulent fluctuations in the background flow. Indeed, the hydrodynamic ejection emanating from the laser spark, which typically plays a central role for isolated kernels in quiescent flows, competes with the entrainment velocity if its values are within the same order of magnitude and if the laser focal location is particularly close to the shear layer’s edge.\u0000</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"113 4","pages":"1055 - 1079"},"PeriodicalIF":2.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fabian Waschkowski, Haochen Li, Abhishek Deshmukh, Temistocle Grenga, Yaomin Zhao, Heinz Pitsch, Joseph Klewicki, Richard D. Sandberg
{"title":"Gradient Information and Regularization for Gene Expression Programming to Develop Data-Driven Physics Closure Models","authors":"Fabian Waschkowski, Haochen Li, Abhishek Deshmukh, Temistocle Grenga, Yaomin Zhao, Heinz Pitsch, Joseph Klewicki, Richard D. Sandberg","doi":"10.1007/s10494-024-00579-7","DOIUrl":"10.1007/s10494-024-00579-7","url":null,"abstract":"<div><p>Learning accurate numerical constants when developing algebraic models is a known challenge for evolutionary algorithms, such as Gene Expression Programming (GEP). This paper introduces the concept of adaptive symbols to the GEP framework by Weatheritt and Sandberg (J Comput Phys 325:22–37, 2016a) to develop advanced physics closure models. Adaptive symbols utilize gradient information to learn locally optimal numerical constants during model training, for which we investigate two types of nonlinear optimization algorithms. The second contribution of this work is implementing two regularization techniques to incentivize the development of implementable and interpretable closure models. We apply <span>(L_2)</span> regularization to ensure small magnitude numerical constants and devise a novel complexity metric that supports the development of low complexity models via custom symbol complexities and multi-objective optimization. This extended framework is employed to four use cases, namely rediscovering Sutherland’s viscosity law, developing laminar flame speed combustion models and training two types of fluid dynamics turbulence models. The model prediction accuracy and the convergence speed of training are improved significantly across all of the more and less complex use cases, respectively. The two regularization methods are essential for developing implementable closure models and we demonstrate that the developed turbulence models substantially improve simulations over state-of-the-art models.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"114 1","pages":"145 - 175"},"PeriodicalIF":2.0,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-024-00579-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Comprehensive Study About Implicit/Explicit Large-Eddy Simulations with Implicit/Explicit Filtering","authors":"Pedro Stefanin Volpiani","doi":"10.1007/s10494-024-00577-9","DOIUrl":"10.1007/s10494-024-00577-9","url":null,"abstract":"<div><p>A high-order computational fluid dynamics code was developed to simulate the compressible Taylor–Green vortex problem by means of large-eddy (LES) and direct numerical simulations. The code, BASIC, uses explicit central-differencing to compute the spatial derivatives and explicit low storage Runge–Kutta methods for the temporal discretization. Central-differencing schemes were combined with relaxation filtering or with splitting formulas to discretize convective derivative operators. The application of split forms to convective derivatives generally guarantees good stability properties with marginal dissipation. However, these types of schemes were found to be unsuited to perform implicit large-eddy simulations (ILES). The minimally dissipative schemes showed acceptance performance, only when combined with a sub-grid scale model. The relaxation-filtering strategy, on the other hand, although more dissipative, was proven to be more adequate to perform ILES. We showed that reducing the filter dissipation, by optimizing its damping function, has a positive impact in the flow solution. When performing ILES, the utilization of split formulas in conjunction with relaxation filtering has equally yielded promising results. This combined approach enhances numerical stability while preserving low levels of numerical dissipation.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"113 4","pages":"891 - 922"},"PeriodicalIF":2.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}